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THE AUTHOR'S PREFACE TO THE
GERMAN EDITION

HE author beheves that he 1s fulfilling a general wish 1n
attempting 1in the present supplementary volume to depict
the recent developments which since 1924 to 1926 (thanks
to the work of I. de Broglhe, Heisenberg, Schrodinger) have
transformed the external aspect of atomic physics The fact that
the inner content of the theory, that 1s, the quantitative assertions
that can be tested by experiment, has for the most part survived
this process of regeneration is manifest to those acquainted with
the subject. The new development does not signify a radical
change but a welcome evolution of the existing theory, while many
fundamental points are classified and made more precise
I have called this volume a ‘“ wave-mechanical’ supplement,
because for practical manipulation Schrodinger’s methods are
obviously superior to the specifically ‘‘ quantum-mechanical”
methods On the other hand, however, I have left no doubt
that the general ideas that have led Heisenberg to enunciate
quantum-mechanics are also indispensable for the elaboration of
wave-mechanics The original standpoint of Schrodinger, that
transitions are to occur only between co-existing states, 18 clearly
too narrow and does not accurately fit the facts I have there-
fore taken over into wave-mechanics the equal treatment ot states
and transitions,—as 1s done by Heisenberg from the very beginning,
—i1n particular in deriving the frequency-condition and the rules
ot polarisation and intensity n §5, Chap I This, of course,
denotes that I am renouncing the more definite wave-kinematic
objective, set up by Schrodinger and de Broglie, and am sacrificing
pictorial representation to idrmalism ,Fn wave-mechanics the
electron still remains a point-charge uliumately, and the lhight-
quantum a point-like centre of energy But the dualism between
the hight-quantum and the hght-wave extenfis into the corpuscular
v



vi Wave-Mechanics

region, beside the election-corpuscle we have the election-wave
with all the accumulative experimental evidence to confum 1t

During several semesters I have endeavouted in my university
lectures to make clear to my class and to myself the chiet 1esults
of wave-mechanics 1n as simple a foim as possible  'We found
that in all cases that permitted of complete mtegration the
‘“polynomial method’ 1s adequate and leads to the final analytical
form  The “method of generating tunctions,” '~ ' oiten
very elegant, 1s here replaced by directly applying the conditions
of orthogonality My purpose 1n the present volume was to bung
out such points of view clearly A moie significant sunplification
18 that which we have been able to achieve i Duac’s theoy ol
the electron

The form i which this supplementary volume 1s presented
follows dnectly on the 4th German edition of Atomndaw wund
Spektrallinren.  Chapter I contains the tundamental conceptions
and their application to elementary problems, whereas Chapter T1
deals with the more difficult calculations of perturbations and dit-
fraction and—the most difficult problem ot all—the relativistic
theory of the electron The present volume can of couise also
be regarded as a supplement to the Enghsh edition, .ltomuc
Structure and Spectral Liunes, to which 1cferences are made
where possible

As 1n the previous editions of the maimn volume T have kept n
view both the theoretical and the expernnental physicist as readers
I have therefoire restricted myself to such problems as may claimn
direct physical intercst The general speculations of the Theory
of Transformations of Probabilities 1eceive far too small a shaie
of space, as do the fundamental questions of Indeterminacy and
Observability Concerning these more general subjects, I under-
stand that other accounts by authoritative wiiters are about to
appear My wish was to preserve the original character of my
book, and I therefore hept my attention as much as possible
on concrete questions I would gladly have treated afresh the
systematic arrangement of spectra from the pomnt of view of
wave-mechanics But there was neither sufhcient space nor tnme
for this, moreover, the theory of the relativistic electron will have
to be further investigated before these things can becowmne sutficiently
clear

In §§4 and 7 of Chapter II on the photo-electric and Compton
effects I have had the pleasure of the collaboration of my colleague, |
Mr F Kirchner I am indebted to Dr 8§ Bochner for many
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mathematical references and suggestions But my special thanks
are due to my faithful associate, Dr K Bechert, who has given
me his untiring help not only i1n all the technical questions of the
printing and 1 all the details of the manuscript, but has also
worked out many points of the text independently, particularly in
the final paragraph on electron spin, so that i1f I had not had his
devoted help 1t would have scarcely been possible to bring the
book to completion at the appointed time

A SOMMERFELD

MunNIicH
August, 1928






TRANSLATOR’'S PREFACE

INCE the appearance of the last edition of the author’s

Atombaw wund Spektrallinien, which 1s generally recognised

as the standard work on the subject, many striking advances
have been made owing to the birth and growth of quantum- and
wave-mechanics ‘What 1s the attitude of the author towards
these new theories? Professor Sommerfeld has endeavoured in
the present supplementary volume to answer this question and to
bring his treatment of the subject completely up to date The
success of his attempt 1s clearly demonstrated by the highly
appreciative way in which the German original has been received
The great numbe1r of original researches which have contributed
to these recent advances often appear little connected outwardly,
by-paths which are ventured upon and later abandoned tend to
confuse the average reader whose mathematical attainments may
be insufficient to allow him to form a just estimate of such contri-
butions The masterly and brnlliant way in which Professor
Sommerfeld has sifted the highly abstract material and brought
into prominence what 1s of practical importance to the physicist
will be recognised by all who wish to follow the thread of progress
of atomic physics under his mspiring guidance He has described
in a particularly convenient form the mathematical machinery
that 18 necessary for an understanding of the theory

The present English edition has had the advantage of being
accurately checked and revised by the author Many additions
and alterations have been made, for example, the last section of
Chapter I has a different form from that which 1t was given 1
the German edition, several oversights in the German edition
have also been corrected A particularly welcome feature 1s that
Professor Sommerfeld has corrected and supplemented the section
on the Photo-electric Effect, on which much interest 1s focussed at
the gresent time, by adding three Notes, rich 1n content, which

<
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form the conclusion of the volume The English edition may
therefore claim to be a stage 1n advance of the Grerman original

References to the Enghsh edition of the main work are briefly
denoted by I placed before the page or chapter quoted In those
cases 1n which reference 1s made to passages 1n the 4th German
edition which do not occur m the Hnglish version (which was
translated fromm the 3rd German edition), the abbreviation
Atombaun precedes the page or chapter quoted

In the hope of ssmphfying the reading of original papers on the
subject the translator has appended a list of the German expres-
sions which occur 1n the text, together with the English equivalents
used by him I am indebted to Professor H T H Yiaggio of
University College, Nottingham, for some helpful suggestions in
this connection  The arduous task of proof-reading was very
kindly undertaken by Mr H F Biggs, M A, of the Electrical
Liaboratory, Oxford, and Mr E H Saayman, M A, of New
College, Oxford, who devoted much time and care to correcting
and mmproving the English rendering I also wish to express
my gratitude to Professor Sommerfeld himself for his friendly
interest 1n the course of the work and for finally checking the
proofs

HENRY L BROSE

Unrvaersrrs Cornuor, NOTTINGHAM
December, 1929
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CHAPTER I

INTRODUCTION TO WAVE MECHANICS, RUDIMENTS AND SIMPLEST
APPLICATIONS

§ 1 Schrodinger's Wave-Equation and the de Broglie Wave-Length

HE antithesis between macroscopie and microscopic events has
often been emphasised For example, the state of a configuration
i heat equilibrium looks quite different when regarded micro-
scopically than from the point of view of the kinetic theoiy of gases
Mechanics and electrodynamies are also macroscopie in origin ~ To apply
them unchanged to the conditions 1in the atom 1s to make unjustifiable
demands of Nature Nevertheless important partial successes favoured
the extrapolation of these theories to microscopic conditions The study
of the electronic orbits within the atom, which has become so 1mmensely
fruitful for our knowledge of the atom, in particular for deciphering
spectia, was founded on classical mechanics And the considerations
of the Correspondence Prineiple, which we required in order to answer
questions of intensity and polarisation were derived from classical electro-
dynamaecs To these two classical principles there weie added two
quantum axioms We indicate them briefly (see Vol I,* Chap IV, § 1,
and Chap I, § 6) by means of the two equations
fpdq = nh (Quantum condition) @)
hv = B, — B, (Frequency condition) (2

The first defines the favoured or stationary states of the atom (more
generally, of the system 1n question) and distinguishes them by means of
an integer n (quantum number) The second determines the iadiation
emitted, 1n a transition from one state to another, by means of the
corresponding energies + H; and B,

But there were various indications that the mechanical laws, even when
amplified 1n this way by the quantum theory, did not yield the whole
truth A particularly simple case in which they failed was that of the rota-
tion-bands of molecules These had to be numbered not by integers
but by half-integers (ef I, Chap VII, § 2, particularly p 418) if the facts

*In future, references to Volume I, English edition, will be denoted merely by I

+In the sequel we prefer to use B in place of the former W in order to indicate
that in general we now mnormalise the energy differentiy from before, namely, from a
rational zero point Whereas this different normalisation 1s of no consequence for the
present, 1t will become essential in § 5, and particularly in the generalisation founded
on relativity 1n § 9

vOL. 1.—1



2 Chapter I  Introduction to Wave-Mechanics

of experiment were to be represented without arbitrary restrictions
Another much discussed example was given by the anomslous Zeeman
effect Landé’s g-formula, which can be confiimed with estreme accuracy,
requwes 2(n + 1) and y(y + 1), etc, 1n all places wheie we should expect
#* and 72, etc, according to the classical theory * For a time one spoke
of a “non-mechanical constramnt” or of “an ambiguity of the model
that defied mechanical description”  Further, the hitherto accepted
theory failed in questions mvolving mutual actions, for example, in the
cagse of the helium piroblem, and indeed also in other cases (highe:
spectral series), where the fault could not be ascubed to the elusive
helium model (¢f I, Chap III, § 6) It is true that recent investigations
have shown that the blame for some of these alleged contiadictions to
the principles of macio-mechanics 18 not to bo 1mputed to mechanics but
to the structure of the electron ~ This 18 so, 1n particular, in the case of
the magneto mechamcal anomaly, which occurs 1 the Zeeman effect,
of the Paschen-Back effect for the hydrogen atom and of the half-integial
values of 7 1n the general structure of the system of series spectia  But,
apart from these, there are still other examples of disagiesment which
point to the antithesis between micro- and macro-mechanics

How can we arilve at a theory of micro mechanics appropuiate to
atomic phenomensa without undue arbitraimess? We shall follow Hrwm
Schiodinger ! by staiting fiom the compiehensive analytical system of
Hamiltonian mechanics Hamilton developed 1t 1 connection with his
researches on the geometrical optics of astionomical mstiuments § Ihs
1deas were mspued by the undulatory theory of optics, which was comnng
to the fore at that time (1828-1837)

The wave-theory of optics deseribes optical phenomena by menns of
Linear partal dufferential equations of the second order and derives the
wave-surfaces (surfaces of constant phase) from them Ihiom the pomnt
of view of the wave-theory, at least for 1sotiopic media, ight-1ays may
be defined as the orthogonal trajectories of wave-surfaces

Geometrical or 1ay-optics, on the other hand, was onginally a
mechanies of Newtonian lLght corpuscles The hight-rays denoted the
paths of these particles Hamilton took over the idea of wave-surfaces
from wave-optics and constructed them as the surfaces orthogonal to
the rays  If their equation 18 S = const , then S satishes a parteal duffer-
ential equation of the first order and second degree This 18 Hamilton's
partial differential equation of mechanics 8 denotes the Hamiltoman

*COf Chap VIII, p 629, of 4th German edition of dtombau and Speltralliman, or
Birtwistle, New Quantum Mechanics, Camb Univ Press

1 Atombau (4th edn ), pp 620 and G35

7 Schrodingex's ocollected papers on wave mechanics have been published in
English 1n one volume by Messs Blackie & Son, Litd , this volume gaves the complote
Gegrgi.n references The chief papers appeared 1 the Annalen dex Pﬁ‘yslk, Vols 79, 80,
an

§ Besudes the references given in Note 7, p 804, Aéombawu, see also F. Klein, End-
wickelung der Mathematek um 19 Jahrhunders, Springer 1926, Vol. 1, Chap V.



§ 1 Schrodinger’s Wave-Equation, the de Broghe Wave-Length 3

characteristic funetion, or * action funetion” this corresponds with our
earlier nomenclature 1 I, page 556 In this way we arrive at the
differential equation and the action function for the individual point-
mass (the individual light-corpuscle) , this method 1s then easily extended
to mechanical systems 1n general

We shall now follow Hamilton’s course in the reverse direction
Whereas Hamilton, starting from wave-optics, passed by way of ray-
optics to the general formulation of macro-mechanics, we shall follow
Schrodinger and proceed from macro-mechanics by way of ray- and
wave-optics to micro-mechanies Just as wave-optics 1s a refinement
of ray-optics for dimensions of the order of the wave-length, so we expect
to arrive at a micro-mechanics which refines macro-mechanics and may
be applied to atomic dimensions

‘We begin with the macro-mechanics of the individual point-mass 1n
rectangular co-ordinates Starting from the energy-equation

m 1
@ty o) = (2 pE g =B -V ®)
(B = energy-constant, V = potential energy, expressed as a funection of
z, y, 2z alone) We obtain, according to the general rules of I, page 558,

the Hamiltonian differential equation
2 2 2
AS = 2m(B — V), where A,S = (g—g) + @-S + %E) @

On the other hand, we wiite down the differential equation of wave optics
n the form

_ 1 2%y 2 %y D
Au—azwwhereAu=w+b?+a—z7 (5)

and where % 1s & rectangular component of the optical field or of the
corresponding vector potential, and @ the phase velocity of the light,
which 1n general varies from point to point We shall, however, at once
eliminate the dependence on time, which we do not discuss w0l § 5, by
making the substitution, for monochromatic hight,

% = etat (5a)
‘We set
w
a=k

and call k the ““ wave-number * This term 1s justified 1n view of the fact
that for a plane wave (cf the end of this section) k¥ becomes equal to
2m/\, where A = the wave-length, that 1s, the spatial periodicity of the
plane wave Thus, in the case of a plane wave, k¥ signifies, 1n more
exact language, the number of wave-lengths that are included 1n 2 units
of length Further, we mtroduce the refragtive wdex n against vacuum
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(the indices O refer to * vacuum,” thus a; 1s equal to the ordinary velocity
of light, ¢)
¢

a
=== L =nk,
a a

n

With these terms defined 1n this way, 1t follows from (5) and (5¢) that

Ag + kg = 0 (6)
We accomplish the transition to ray-optics by following an 1idea of
Debye's * as follows In ray optics we regard the v . 1_"1 ) as

small, that 1s, %, as ““large ” (“‘small” means mhnitely small comy ared
with all the dimensions of the optical apparatus that are involved) We
write

¥ = Aegthd (ba)

and treat A and S as “slowly” varying quantities, that 19, 1 the
derivalives

Y 8 | DA\ ¢
5z = (holsy + 55 )0

A% 8\ ? 28 QA 8 A L
% = [‘ kPA(S,) + thohgg + Bhug, 3o + WJ"' »

we neglect all the lower powers of %k, imn comparison with the highest
occurring power If we then cancel 4%, (0) becomes

AS =l )

This 18 the differential equation of the ‘ eikonal,” the charactenistic
function for ray-optics Comparison with (4) (a dimensional difficulty
that oceurs will be discussed presently) gives the formal 1elation

nt=2mE - V) (8)

If we translate Hamiltonian mechanics into the language of ray-
optics, we see that 1t operates with a refractive index that varies accord-
ing to the measure of V this gives us something similar to the curvilinear
course of rays through the layers of the eaith’s atmosphere We insert
this value of #» 1n the differential equation (6) of wave optics, and thus

obtain in addition to the picture of mechanics based on :ay optics one
based on wave-optics and represented by

AY + 2m(B — V)k2y = 0 ©)

A remark on dimensions must here be added In equation (4) S has the
dimensions of an action (erg sec), whereas 1n (7) 1t has the dimensons
of a length Hence the comparison of (7) with (4) leads to a formula
with wrong dimensions (on the left 18 a pure number, on the right 18 &
quantity of the denomination grams ergs) We must, therefore, corre-
spondingly alter the dimensions of %4y 1 (9) %, must have the dimensions

*Cf A, Sommerfeld angd J, Runge, Ann d Phys, 85, 290 (1911)
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of the reciprocal of an action, whereas 1t was originally the reciprocal of
a length  Since, further, %, must be universal, a possible value * 18
A

ky = W (10)
where, of course, the factor 2 18 arbitrary a priors, but a posterior: can be
justified without ambigmty by comparison with known solutions 1n the
quantum theory We therefore obtain from (9) as the final differential
equation of mecro-mechanics wn 1ts sumplest form (that 1s, for a single point-
mass and a conservative field of force)

Ay + 2m(B — V)<-2}-b’5>2¢ =0 1)

We call this equation the wave equaton,T and ¢ the wave-function, and
we regard eqn (11) as the foundation of wave-mechanics

Firstly, we shall broaden this foundation Instead of one point-mass
we shall consider several freely moving point-masses, which are coupled
to each other by conservative forces Thus V 1s now to be a function of
the co-ordinates of position of these various point-masses The case 1n
which the forces have no potential (magnetic field) will be deterred, until
we can proceed with the irelativistic generalisation ot our wave-equation
(ef §9)

If we trace the derivation of (11) backwards, we find that in the
energy law the kinetic energies must be superimposed on each other in
the form

1
D g2 + 2%+ pPa
@
where the index « labels the ndividual point-masses If we express the
p’s by means of S and pass from 8 to , we get as the generalisation of
(11), after taking the factor %, from (10) over to the left side,

72
EWA#’ +(E-V)y =0 (12)

The 1ndex « attached to A denotes, as 1s evident, that the differential
parameter A 1s to be formed for the Cartesian co-ordinates ., ¥a, #a of
the point-mass o  1itself 1s a funection of all these co-ordinates, and
cannot 1n general be separated into parts each of which depend only on
the co-ordinates of one point

* It 18 to be regretted that when Planck mntroduced his constants he did not call
his element of energy hw 1nstead of 2y In the latter case, on account of w = 2wv, the

value of % would have been equal to 2%_ 655 10— ergsec In place of (10) we should

then have had %, = 1/h, and all other formule of wave mechanics would likewise have
become simpler In the sequel we shall occasionally make use of the abbreviation k, 1n
(10) 1n. order to get rid of the mconvenient factor 2
+ Schrodinger himself onginally wished o reserve the name ¢ wave equation ” for
one analogous to (5) but conteining the time We shall call the latter, to distingmsh
;t fro?n) (11), the * time equation ™ It 15, as we shall see 1n §5, differently built up
rom (5
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There 1s no difficulty 1n 1ntroducing curvilinear co ordinates for one
or several pownt-masses 1 place of the Cartesian co-ordinates It 1s
only necessary to transform the differential expre<sions A« 1n the wave
equation into the new co-ordinates by the well-known wules If the
point-masses are not free but dound, then co-ordinates being subject to
equations of constraint, then we must intioduce, as 1n ordinary mechanics,
generalised (Lagrange) co-ordinates, by which the equations of constrant
may be eliminated But we prefer to discuss these general matters later
when we deal with a particular example (§ 11)

Schiodinger has also developed a very interesting method of deriving
the wave-equation for the special case ot a point-mass o1 for the general
case of a mechanical system from a problem wn the calculus of variwbions
‘We shall, however, also deal with this matter later in connection with
the relativistic generalisation of the wave-equation

As for the integration of the wave-equation we shall here make only
the following remarks The objective 1s to find such ntegrals of ¢ as
are one-valued and continuous wm the whole range of valudwy uof the co-
ordanates, including the boundary pomts The boundary condibwn of con-
timusty that presents 1tself 1n this way furmishes us, to our surpiise, with
a complete substitute for our quantum condition (1) The quantum
number % that occurs in (1) comes 1nto existence spontaneously in solving
the “boundary problem ™ 1n question In this way our quantum condi-
twon (1) may be dispensed with as a specwul axwm In wany cases, more-
over, as we shall see later, 1t 18 subjected to coirrection

The position here 1s similar to that in the boundary problems of
ordinary mechanics, for example, m that of the vibrating string In thig
case, t0o, the boundary condition (given by the hxed ends of the stiing)
leads to the introduction of a whole number » which distinguishes the
different forms of vibration as fundamental tone and overtones, and 14
equal to the number of loops or one more than the numbet of nodes

To be able also to dispense (in a certain sense) with the frequency
condition (2) i the wave-mechanical treatment we must elaborate our
wave-equation further (§ 5) by taking into account the dependence on
time

Finally we consider as the simplest concewvable example to which the
wave-equation can be applied a powni-mass under no forces (V = 0)
According to (11) we then have the differential equation

Ay + 1y =0, K= §ng (18)

We integrate 1t as in the optical problem of the plane wave
Choosing the positive direction of the z-axis we write

¥ = Atie (14)
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The range of the z-co-ordinate extends from z =~ o toz =+ ©

Our solution 18 one-valued and continuous, including these imiting points,
and so satisfies our general boundary condition for every positive value of
E  While 1n other cases the boundary condition can be fulfilled only
by the special choice of B, E here remains undetermined We interpret

E as the kinetic energy of our point-mass, setting E = m22/2 From (13)
we then get

Qrmo
B = % (15)

The spatial period of our i function, that 1s, the wave length A therefore
becomes

2

A=k mo

(16)
In this way a wave-length A 1s allocated to the motion of translation of a
pont-mass  We call (14) a de Broghe wave and (16) the de Broglhe wave-
length, for Liouis de Broglie—in hig Thesis (Paris, 1924)—assigned wave-
lengths 1n this way even before Schrodinger’s papers appeared The
train of 1deas which led him to do this will be indicated in § 5, where we
shall also see the part played by the veloeity v of the mass-particle
(group-velocity as compared with phase-velocity) in the wave-picture of the
Y-function At this stage we shall give no details but merely emphasise
the fact that the conception of corpuscles (electrons and atoms) as waves
has already borne fruit experimentally (Details are given in Chap II,
§§ 5and 6) We already speak of a ¢ diffraction of electrons by crystal
lattices,” and compare the experimentally obtained directions of diffrac-
tion with those which occur m the case of Rontgen rays The twofold
nature of hight as a light wave and as a lhight-quantum 1s thus extended
to electrons and, further, to atoms thewr wave nature 1s asserting itself

mote and more, theoretically and experimentally, as concurrent with their
corpuscular nature

§ 2 Explanation of the Mathematical Method Spherical Harmonics
Bessel Functions

In the sequel we shall continually encounter linear differential equa-
tions which are to be integrated in such a way that the solutions are
single (uniform, emdewirg) within a prescribed 1egion and, mcluding the
boundary points, continuous As a rule this 1s possible only if there
ocecurs 1n the differential equation a disposable parameter, to which
appropriate values may be assigned These values are called proper*
values and the corresponding solutions are called proper functions The

* Ewgenwerte, which 18 often rendered by characierisirc values, hikewise Higen
funktionen = characteristic functions We have preferred to use the shorter word

“ proper,”’ especially as 1t seems to have established itself in the current hterature on
the subject
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whole theory was origmally developed for a vibrating stimg with a mass
distribution varying from point to point or, what comes to the same thing,
for the conduction of heat along a 1od 1in which the conductivity varis
along 1ts length (Sturm-Liouville problems)* We here give only so
much of the theory as 1s absolutely necessary and immedately llustiate
the process by taking special examples

A Spherial Harmonics

Stairting from the vibration-equation 1n thiee dimensions
An + Ku = 0,
such as occuis, tor example, 1n acoustics, let us consider a problem ol

boundaiy values with spherical symmetry and mtioduce polm co-ordinates
r, 0, ¢ Asis well known, we obtain

123/ 0u d2 1 'u
'7531( Dfr) MET smabe(sme ) * o Teme 7¥sint 6 0¢' + =0 (1)

We wish to integrate this equation by the method of scparation ot
variables (cf the corresponding method tor Hamilton's diftexential
equation i ordinary mechanies, I, p 659) that 15, we sct

= R(7)0(f)2(¢)
Whereas R 1s fully determined only by a boundary condition which
would have to be presciibed 1n the case of an exteinal boundimg sphere,

® and @ are already defined by the postulate that the solution 13 to be
uniform (single valued and continuous, einde utiy) 1n the co-ordinate 1egions

00, —rT=e=S +T

except for a disposable whole number m each case, as we shall presently
see

We first consider ®(¢p) We may call ¢ a cyclic co-ordinate (ef I,
Pp 443 and 561) since 1t does not occur explicitly in the equation (1)
It 18 10 accordance with this that we set ®(¢) = exi® The postulate
of uniformity leads to integral values of m

We 1nsert ® in the differential equation, divide by R@® and multiply
by 7*  This gives

72/@R 2 dR felc)] me
R\a= *7a t “R) =" ®<51n 0 dO{ P sfxf‘?)) (1a)

The common value of the two mdes of this equation must equal a con-
stant, say A Hence we get the differential equation for &

1
s 6 dé‘{sm 9d9} ()t sin’ 6‘>® =0 (1b)

* For this and for all other mathematical problems mvolving boundary values
consult the excellent volume by Courant and Hilbert, Methoden der mathematischen
Physik, Springer, 1924
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The “separation-constant ” A 1s at the same time the ¢ propet-vilue para-
meter ” of this differential equation We 1ntroducesg = cos 6 as an
independent variable, write ®(¢) = y(z) and take nto.pccomnf.fhat

sinfd df = — dez, smeg—g =- (1 - a9y
From (1b) there then results

2
@ - 2y ~ 22y + (’* - 1—”}5‘.«)9 =0 @)

This 1s the differential equation of the gemeral (so-called associated)
Legendre function The pioduct y (cos §)@(¢) 1s a * surface-harmonie,”
bemng a so-called “ tesseral harmonic ” *

Sungular pownts of a linear differential equation 1s the name given to
values of the independent variable z for which one of the coetficients
becomes infinite It 1s 1implied that the equation 1s reduced to 1ts standard
torm 1in which the coefficient of the highest derivative of y 1s reduced
by division to unity, or we shall say the equation has been normalised
All other points are called ordinary A singular point 1s called a pole
(ausserwesentlch singulare Stelle) 1t a power series 18 possible at 1t which
contans only a finite number of members with negative exponents
Otherwise the singulaiity 1s an essentwsl simgularity Ordinary pomts
and poles are also classed together under the name of regular pownts
To determine the exponent a of the initial term of the power senies at a
pomt 2 = 2 — z, = 0, we make the substitution

y = 2%ay + @z + ay’ + ) @)
and detexrmine o as the root of a quadratic equation (we restrict ourselves
to diffexrential equations of the second order, which we assume normalised
i the above sense) namely, of the so called characteristsic equation It
18 obtaned if the series (3) 1s inserted 1n the left-hand side of the
differential equation and 1t the factor of the lowest power 2*—" 1s set
equal to zero Equating the factors of the following higher powers to
zero gives us a recurrence formula for the ar’s The recurrence formula
may be obtained more conveniently if we change the dependent variable
by setting

y=2%, v=3az 4)
and calculate the ai's trom the differential equation for v

The general criterion for a pole 1s, as the process just described 1m-
mediately shows, that the coefficients of 7", 4" and ¥ mm the original
differential equation may not at the pomt in question, z = 0, approach
infinity relatively to each other more rapidly than

1 1
(R R (5)
respectively

If the two roots «,, «, of the characteristic equation differ by a

whole number, peculiarities (logarithmie terms) occur m one of the two

*The terms zonal, tesseral and (for the special case of maximum values of m)
sectorial surface harmonics are due to Maxwell COf the mmportant Chapter IX of his
Treatise on Electricuty and Magnetism
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Particular Solutions We shall not discuss this aspect as we a1e interested
only 1n the continuous solutions of om differential equations

In the case of the differential equation (2) the ponts x = + 1 and
z = o are singular, being, indeed, as we shall show, poles If, for
example, to investigate the pomnt r =1, we set z = 2 — 1, then (2)
becomes

., 2241 A m ) 0
zz+27 ° (z(z+2) oz +2) )Y T

The application of criterion (5) shows us that = = 0 15 1n tauth a pole
If we use substitution (3) and torm the factor of 2*—* the expiession

(oc(oc - 1) + o« - "—'47—':)(&(,

follows Since we may assume a, to differ from zero, the charactenstic
equation becomes

2 m

The same exponents result for the pomnt # = — 1 by making the sub
stitution 2 = 2 4+ 1

l, well

To investigate the point z = oo we make the substitution 1 = ¢

known from the Theory of Functions, and obtain in the case of (2)

2 1 m't
Y p Y g 2 I)(k T - )J =0

where the dots denote dafferentiations with respect to ¢

The application of the ciuterion (5) shows as above that ¢ — 0 18 also
a pole The characteristic equation becomes

e — 1) =A=0

On account of the postulate that ¥ must be continuous 1n the 1egion
~ 1Sz =< + 1 we now look for that branch of the function that hus

the exponent -+ ’-;—z (m being assumed positive) at the two hmits z = *+ 1
As suggested by eqn (4) we therefore set

y=(1~- 2 (7)

by simultaneously detaching from y the fwo characteristic powers 2% of
the singulanties situated 1n finite regions (¢ = + m/2, 2 = 2z 3 1) By
working out (2) we easily get for v the differential equa.tlon

(1 - 2" —12(m + L)av' + (A — m — m¥)v = 0 ®)
This may be integrated by assuming
v = Saxr . N )]
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By substituting in the differential equation and equating the factor of
x¥ to zero we get the following recurrence formula for the a,’s

v+ 2)v+ Daypg={r - 1)+ 20m+ 1)y — X + m + ma, (10)
If we choose A so that the factor of a, vanishes, say, for v = k, then
according to the recurrence formula all coefficients az g, @z .44,
vanish, and our series (9) ceases at the term v = % 1t contains, as we
also see from the recurrence formula, only even or odd powers of z
according as we allow 1t to begin with a, or a;z The choice of A thus
decides the proper value of the spherical funciions With v = & we get

A=k - 1) + 2(m + 1)k + m(m + 1)
= (k + m)(k + m + 1)
As v 1 this way becomes of degree k we get & + m for the degree of the

corresponding proper function ¥ (¢f 7), we write % for £ + m  Written
1n terms of this # the proper value 1s simply

A=nm+ 1) (11)

The above method of determining a proper value and proper function
18 applicable 1n all cases in which the ditferential equation leads to a
recus rence formula with two terms We shall see that this 18 so with all
quantum problems that aie exactly soluble (that do not require methods
of approximation or perturbations) The fact that the recurience formula
has two terms may be recogmsed directly from the differential equation
For if we substitute for v a power zv then, after multiplication with
the coefficients of the differential equation, only two powers may occur
(1n our case they are 2¥ and ¥ —2) It may also be determined 1n general
whether a given differential equation can be transformed 1nto one having
a recurrence formula with two members *

This procedure, which 1s based on the termination of a power seiies,
we shall call the polynomial method It 1s evident that 1t 1s sufficient
in character For our polynomial (even after being multiphed by the
detached factors, ef (7)) 1s certainly continuous 1n the region under con-
sideration (which 1s here # = — 1 to # = + 1), and so represents a
proper function The fact that our procedure 1s also pecessary 1n
character, that is, that theie are no other pioper functions of the
differential equation besides those found, may easily be shown,t at any
rate 1n the case of spherical harmonics, but may here be passed over

The usual method of denoting the 4 of eqn (7) 18 Pi(z) Since &,
being the degree of the polynomial (9), 1s a positive whole number and
since m must also be given positive and integral values in the proper
tunctions (integral on account of the postulate of uniformity for ex),
therefore n = & + m also becomes an integer greater than or equal to m
Thus 1f we fix n there are » + 1 proper functions P]* The first of these,
for which m = 0, 1s the spherical harmonic of nth degree in the narrower

* Forsyth, Dijfferential Equations Noteon p 589 et seq of the German edition

( 'I')Most simply by the theory of functions, cf K Bechert, Ann d Phys, 83, 906
1927



12 Chapter I Introduction to Wave-Mechanics

sense and 1s written simply P, (zonal harmonic or Legendre’s no v ma
The other n# proper functions are the “ associated '’ functions ot the same
degree n  The last proper function, for which m = # (sectorial hai-
monies), 18, by (7), proportional to

3
1 - 2*)? = (s 6)™
If we differentiate eqn (8) with respect to z, we get a differential equation
for »* which 1s distingmished from that tor » only by having m + 1 1n
place of 2 From this we infer that in the serles of functions P, Pl

P™ P™+1 the v belonging to every following polynomial may be

o
e /r‘ Py (x)
0 +7 N

-1

Fia 1 Fia 2

The (ordinary) sphercal harmonics Pa
= Pg are drawn to scale
P0=1,P=0P0= 1y -
3

1
2

The assouiated ¢pherical func tions

m
2 dm
Wbl
dr

have beon divided by appropriate factors

Pm(z) = (1 - 1)

Po= g:z:’ -z
a 2 so that tho maximum of each 1’::‘ became

equal to 1 The figure shows
15 ] 1
'[_>'0 11 p1 'anv Pl‘ }/0» pl, 15
obtained from the preceding one by differentiation We thus get the
associated spherical harmonies represented by the [ cger dic polynomals

" 3 (@) (12)

m
P;,:(w) = (1 - “’2)2dmm

In this 1dentity the usual normalisation of the associated P7's has already
been carried out The P,'s themselves have been normalised since
Legendre’s time by setting

Pyl) =1 (12a)

But later we shall become acquainted with another kind of normahsa-
tion based on the orthogonal relationships that subsist between all proper
functions

We have yet to mention that the number of spherical harmonieg
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(proper functions of the two-dimensional problem 1n 6 and ¢) 1s not equal
to » + 1, but, on account of the double sign 1n (12b), to 2n + 1 For
they are represented in their totality by

Unm = P(cos Getvmd (12b)

B Bessel Functions
‘We revert to eqn (1) and now consider the radial component R of
the solution there assumed By (la) its differential equation 1s
d’R | 2dR y A
ST it (B-RR=0 (13)
or, it we substitute tor A the proper value (11) and set kr = p (dashes
here as well as 1 the sequel denote derivatives with respect to p)

. 25, n(n + 1) _
R+ SR +(1—T>R—O (182)

According to the meaning of r the boundary points of the region in p are
the valuesp = 0 and p = 0  The criterion (5) tells us directly that p = 0
18 & pole We investigate the asymptotic behavwur at this pomt by a
method which 1s perhaps lacking in mathematical rigour but which, in
later cases as well as hers, will always lead directly and surely to the
result For great values of p (13a) becomes

R"+R=0 (13b)
and 18 mntegrated, by the two particular solutions
R=Ae+* and R = Be~* iespectively (14a)

We can immediately find a second approximation by assuming, for ex-
ample, the coefficient A to be a “ slowly varying quantity ”’ By this we
mean (see p 4) that we regard A’ as differing from zero, but neglect
A" and A’/p as well as A/fp* By substitution 1 (18a) we get, if we sup-
press the common factor e*

%A+ A =0, A= Jonst (13¢)
I3 P

The same holds for B  Both particular solutions are not only fimite
a + p = o but actually vanish From this 1t follows that the solution (14),
which, for p = o must resolve into a combination of the particular solu-
tions (14a), fulfils the condition of continuity that 1s to be postulated, not
only for p = 0 but also for p = o, mfinity introduces no new condition for
the proper funetion B The parameter %4 that also occurs in the differential
equation (13) thus remains undetermined for any unhmited region If,
on the other hand, the region were limited by a sphere » = a, for which
R, say, 1s to vanish, we should get & transcendental equation for % and a
« discontinuous spectrum ” of values of # In the case of the unlimited
region we can talk of a ¢ continuous spectrum ”
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We next show that our proper function (14) 1s essentially a Bessel
funetion, namely that

C
R = e Jn, lr
" +1 (p) (15)

If, actually, we msert this 1n (13a) we get for J after an easy caleulation
the differential equation
]~/r+1]'l+<1_ ("L-'_,})>T=O
P P
This 1s the well-known differential equation of the Bessel tunetion of
mmdex n + 4 The fact that in (15) we can be deiling only with the
solution of this function which 1s imte m a finite 1egion, and not with the
so-called Hankel solutions H, follows fiom our postulate ot continuity at
=0

? Whereas 1n the sequel we shall continually meet with spheiical
harmonics, we shall not need the Bessel functions dnectly Tut the
method will in many cases be uselul for obtamnmg asymptotic 1epresenta-
tions such as we worked out i1n this example

§ 3 Oscillator and Rotator Thewr Proper Values according to Wave-
Mechanics
In this section we first correct I, Chap IV, § I, by ieplacing the
former quantum condition by the postulate of continwty of the proper
funections concerned

A The Lwmear Harmonwe Oscilluator
When displaced a distance 2 1t has the potential eneigy

V= ’é’m-’ = qg wyz? 1)
wy = 2mv, 18 the “ cncular ' frequency (K7ewfrequenz) ot 1ts proper vibra-
tion (in the sense of classical mechanies) This 18 calculated from the
constants % 1n the expression for the elastic restoring force (- 47) and
the mass m of the oscillator wy? = k/m By eqn (11) of § 1 the
wave-equation of the oscillator becomes, for the given value of V,

d:’ 4)
Y (= ) = 0 @
A and « are abbreviations for the following quantities
2
Aa%-mm, aug’-"—mr“’—" . (28)

The range of the co-ordinate 18 from @ = - @ to @ =+ @  These
hmiting pomnts of the range are essential singulanties We rocognise
thus 1f we enquire into the asymptotic behaviour of  for large values of z.
We may then strike out A in companson with odz® and (2) becomes
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' = «?x% This equation 18 then asymptotically integrated (cf eqnm
(13b) of the previous section) by

S 3)
¥ = * ary, Y’ = alzhy

(in the latter we have neglected a term which 1s of lower order in 2)

We can use only the lower sign 1n equation (8) since y 18 to remain finite
forz = £ @  We therefore set

For 1t gives

g = e—% (4)

(sinularly to § 7 of the preceding section) and determine v (without
neglecting any terms) from the differential equation (2) Wnting

o
F = ¢~ 2* we get from (4)

¢ = F( — azv)
¢’ = F@" — 20zv’ — av + o?x?)

(A9,

Fia 3
The first five Proper Functions of the oscillator
£
1 _£2
tn= g gm0

H, =1, H =2 H, = 4 - 2, Hy = 828 - 12, H, = 16& — 48¢ + 12
Concerning the normalisation here chosen for y of §6 4

So, noting that the term 1n #? cancels n virtue of our choice of the factor
F, we get
v’ - 2aav’ + A — ) =0 (5)

We divide by « and use as the mndependent variable the dimension-
less quantity

£= Jazx (5a)
Denoting differentiations with respect to & by dots we get from (&)

v-2§w+(g—1)v=o 6)
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We integrate this equation by means of the power seiies

P o= E a8 (6a)

and obtain fiom (6) by equating to zero the member with & the two-t-1med
recurrence formaula

v+ 2@+ Da, 4, + <; -1 - 21/){1., = ()

We shall make the power series end with the term v = = To do this

we need only equate to sero the tactor ot @, m the 1eccurience formula,

whereupon all the later coeflicients ayn 4, @u 4 4 vanish *
Thetetore

:=2n+1 (7)

o1, on account of (2a)
(l)"

B, = (n. + é)/zgﬂ_ (72)

In the earlier treatment by means ot the quantum condition j pdq = nh

we obtained nliv, = nhwy/2r {01 the nth enexgy-level Thus the char-
acterwstic duflerence between the old and the new formuda (Ta) consists wm the
appearance of 7 alt-infer (1« anstead of integers

Concerning the experimental confiumation of thus result ef the 1esults
quoted 1n § 3, D, m puticular the {ootnotes (*) and (1) on page 24

The polynomials (6a) which we get axe culled Flermatean »
(when appiopuately normalised, which 13 discussed 1 § 6)  We write
v = I, and get for the nth proper tunction ol the oscillator, by (4),

Un = o= HL(8) )

The »'s are even or odd 1n ¢, according as n 18 even ot odd y, 18
1dentical with Gauss’s Enor Curve since H, = const Thg 3t 1epre-
gents graphically the first five proper functions The fact that the y,'s
actually fulfil the postulate of continuity in the 1ange — @ S¢S + @
ensured by their expression as polynomuials i (8)

B The Rotator wn Space

Asm I, Chap IV, p 198, we imagine a pomnt-mass 7 16volving round
o fixed centre at a given distance @, but here we shall not assume the
motion to be in a circle, that 18, 1n one plane, but shall from the outset
consider the motion to take place on a sphere, that 18, we shall consider
the case of two degrees of freedom We ghall retuin to the case of
the rotator in the plane presently For a fixed value of a the potential

* The form of the recurremce formula shows directly that in general either the

even or the odd coefficients may differ from zero, but not both
+ According to Schrédinger, Naturwissenschaften, 14, 664 (1926).
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energy 1s constant and may be set equal to zero The expression A
which represents the kinetic energy in the wave-equation, 18

1 2 dy 1

AV = Zramd 3\ Y56 + i g 3¢

1n three-dimensional polar co-ordinates 7, ¢, ¢, by eqn (1) mn § 2, if
Wesetbb— =0andr=a
7
Hence we have the following wave-equation with V = 0 and J = ma?
(moment of 1nertia of the point-mass m about the fixed centre)
1 2 W 1 2y 8B,
sin 8 ﬁ(smeb_é)"'smza S T TR ¥=0 ©)

This 1s the differential equation of the spherical harmonics, which were
Integrated 1n § 2 by assuming the solution ®® The proper value para-
meter there designated by A 1s here represented by

872JE
Accordingly 1t follows from eqn (11), § 2, that
TR, B2
B3R e mim + 1), By = g mim + 1) (10)

Compare this result with that obtained by the earlier method n T,
Chapter IV, p 198, or more directly, with I, Chapter VII, p 414, eqn (1)
The difference 1s that m(m + 1) has taken the place of m? Since
m(m + 1) = (m + §)? — %, we see that the essential difference mn this
case, too, as 1n that of the oscillator 1s that half-integers have taken the
place of wntegers TFor if mm order to apply the result to rotation-band
spectra we form the difference of the proper values (energy-levels) for the
transition m, —> m,, the constant } cancels out and we get

mg(my + 1) — my(my + 1) = (m, + 3)? - (m; + 3)°
in place of the m,? — m,? obtamed by the earlier treatment And we
need the system of half-integral enumeration, as was remarked in §1, 1if
we are to account adequately for the observed rotation bandst+ The

proper function
Y = P, (cos Gl £ s

belongs to the proper value (10) [ef § 2, eqn (12b)] In contrast
with E 1t depends not only on # but also on = 'We have therefore not

* In place of n and m (cf § 2) we now mtroduce as indices of the spheiical harmonics
m and u, as we wish to reserve n for the oscillations of the rotator (cf D)

+ This holds both for the bands in the wisible and for those m the mnfra red region
For the latter see M Czerny, Zeitschr f Phys, 44, 235 (1927), 45, 476 (1927) The
earlier explanation obfsa,med7 by assuming a half-integral moment of momentum for the
electrons belonging to the molecules has already been demounced as unsatisfactory m
Atombau, Chap 1X,p 718 (cf, in particular, footnote 2)

voL 1T —2
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one proper function, but, on account ot w<m, 2m + 1 different ones
The proper value (10) 1s not simple but has a 2m + 1 multiphaity  In
this case we speak of a degeneiate proper value problem

The notion of degeneracy was fust mtroduced by Schwwsschild (ct
I, Note 7, p 567) Schwaisschild used the term degenerste when
rational relafionships existed between the petiods ol the oihit, that 1s
when the original number of * quantum degices of heedom ™ allowed
iself to be reduced Boht has often expressed the view that superfluous
degrees of treedom (superfluous co ordinates) are to be avoided wnd has
worked out a method of doing this, for example, 1 the case of the Kepler
ellipse and the Stark effect (¢t I, Chap IV, §6, and Chap V,84) From
the standpoint of wave-mechanics we must conversely demand that the
number of degrees of frieedom must from the very outset not he 1educed
We must treat the rotator as a configuration wn space, a4 we hwve done
just above we shall give fuller 1easons tor this below We must treat
the Kepler problem 7ot as a one dimensional problem (““poriodic oibat ”
i Bohr's sense), nor as two dimensional, but as a three dimenswnal
problem (“spatial quantising ), as was donen I, Chap IV, §7  Conse-
quently, degenerate problems are the :rule in wave mechanies  More
over, a new form ot degeneracy (‘“‘exchange degenerncy,” lustausch
Entartung) presents itself, which was unknown m the older quantum
theory The degiee of degeneracy can i this case always be measmed
by a fimite number, namely, by the nember of proper functions that belony
to the same proper walwe, by which we mean that non degencincy ewists
when there 18 only one proper function corresponding to the propar value
n ques}sltlon, simple degeneracy when therc ate two proper functons, and
so fort

C The Rotator wn the Plane The Oscillaior wn the Plane and m
Space
‘We have the case of the rotator 1n the plane (motion of a point-mass

N
m a cwcle), 1f mn the expression for Ay we not only mahe ;, = 0, and
A

r = a, but also ;—0 =0 and 0 ==/2, a8 1 §3,B, that 18, we let Ay

depend only on the third co-ordinate ¢ Hgn (9) then becomes

aty 82T 1
T P MW =0 A="T0 (11)
The solution of this equation 18
Yo=eXimb  gpl oo ) (12)

where 7 must be an integer, in order that our solution (12) may be one-
valued 1n ¢  From (11) and (12) 1t thus follows that
him?
E = Py . (18)
This agrees exactly with the earlier result of quantising the rotator 1 I,
Chapter VIT, eqn (1), p 414, and duffers from the proper value (10) of
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the rotator in space by having m? instead of m(m + 1), or, to express 1t
less accurately, by having integral m’s in place of the half-integers
m + %

There can be no doubt that the treatment of the rofator as a space-
problem 18 exact and that 1t 18 mnadmaissible to treat 1t as a plane problem
both from the theoretical standpoint of wave-mechanics and n the light
of the experimental results obtained for band spectra This leads us to
enquire whether we have also to correct our treatment of the oscillator as
a lmear configuration and whether the oscillator in the plane or 1n space
lead to prope: values other than those of the Linear oscillator To test
this we replace eqn (2) by

AV + (A - &Sz =0 14)
where A and « have the same meaning as in (2a) and Ay now denotes
the usual differential expression in the rectangular co ordinates z;, z, o1
x,, Ty, Z; 1espectively Egqn (14) admits of “separation” into these
co-ordinates just as readily as the corresponding problem in the older
qguantum theory (cf I, Note 7, p 559) If we write X = A\; + A; and
A= A + Ay + Ag, respectivelv, we get for each co-ordinate a total
differential equation of the form (2) with A, mnstead of A and z, instead

of z, and for A, the condition (7) with n, instead of » For the sum of
the A,’s we therefore get, by (7),

A= EA‘ = a2(277q -+ 1)

where the n,’s are integers, and for the total energy of the oscillator we
get, by (7a),

E = SE, = 3(n, + %)h%’r

In the case of the plane oscillator (2 = 1, 2), 3(n, + %) 18 certainly
an 1nteger, but 1n the case of the oscillator, 1n space (+ = 1, 2, 3) certainly
a half-integer So we get here, just as 1n the case of the rotator, the
surpnising result that the oscillator 1s to be quantised in half-integers or
integers alternately according to the number of dimensions used We
shall meet with the same result in the case of the Kepler problem

For the proper functions of the oscillator 1n a plane or in space we
simultaneously get, by (8),

Yn = .lTe - gx‘sz( Noz,), n = z'n,

Thus the problem 1s degenerate for a giwen = there are just as many
different proper funections as the number of ways in which » may be
built up additively from the imtegers n; The degeneracy disappears
when we pass on to the anisotropically bound oseillator, that 1s, when we
assume the proper frequencies w, and hence also the a’'s (of eqn (2a))
for the different co-ordinate directions to be 1mcommensurable The
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possibility of separation and the mode of calculation remains unimpaned
n this case also

Instead of r1ectangular co-ordmates for separating and mtegrating the
two or three-dimensional oscillator we may also use polar co-ordinates
1n two or thiree dimensions, cf the fully analogous considerations m T,
Note 7, page 563

We next ask what number of dimensions 1s to be taken i the case
of the 7eal oscillator  If we are dealing with the osallations ot diatomie
molecules along the line connecting the two atoms, the answer 15 un
doubtedly the linear oscillator  We shall occupy ourselves fuwrthar with
15 1n § 3, D, but 1n contormity with the analytical nature ot the prohlem we
shafl use not rectangular but polar co-oidinates In the ciwse of poly
atomic molecules the motion hecomes 1esolved into the prmapt] vibia-
tions of the system, of which each 1s agnn equivalent to a linem
oscillator

D The Oscilating Rotator

‘We generalise the assumption made 1 § 3, 13, by 1¢guding the thud
co-ordinate r as vailable besides the two spatial polar co mdinwtes ¢ and

!
¢ Thus we no longer set 7 = a but mtioduce p - LR variable

and 1magine a field ot torce of potential energy f(p) supciposcd, in which
an oscillation of p can occur about the value p = 1
The wave-equation then runs

71"!
sy + TPwm - fy = 0 (15)

Ay 18 to be taken fiom eqn (1) of § 2 We may wute the ot
membe: of this expiession (as in the classical tieatment of the spherical
wave) 1 92 Ly
" 3,2(”‘/’) = adp Dpa(P‘//)
If we now set
py =F P (cos 6)

and take 1nto account the differential equation of the spherical harmones
[eqn (1b) of § 2 with A = m(m + 1)], we get from (15), uaung, as
before, the abbreviation J = ma?

aF  mm + 1 8x2J
& - " B - e - 0 (1)

As suggested by I, Note 17, eqn 5, page 612, we assume J(p) to be
of the form

FO)=A~B(Z - gmt o~ Dikoe -1t )
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This assumption automatically fulfils the condition that p = 1 (that 1s,
7 = @) must be a position of equilibrium of the point-mass in the field
of force and 1s quite general in virtue of the available constants A, B, 8, ¢
which oceur 1n 1t It corresponds to an arbitrary electrostatic field of
force such as can oceur between two charged 10ons (of which one 1s to be
imagined at 7 = 0 and the other vibrating about 7 = a) For if we
calculate the force acting in the r-direction

9 1, B 1 1
Bip-1
+ 4e(p — 13 + )=—ET_3b(P_1)2+ >,

we find all powers of the distance p — 1 from the position of equilibrium
represented If we here set b =¢ = = 0, we have almost (not
quite) a harmonic oscillator, 1n which the restoring force — K 1s propor-
tional to » — a (provided we set the denominator p® equal to 1 as an

approximation) The coefficient of » — a 18 %:-; in this case, divided by

the mass 1t gives the square of the frequency for small vibrations of the
oscillator If we call this frequency w, as earlier, we have

wg? = IT‘ or B = Jug? (17a)

The assumption (17) 1s due to A Kratzer It played the decisive
part in the older development of the theory ot band spectia, and 1t offers
the same advantages i1n the present treatment of the problem by the
wave-theory * TFoi, as we shall presently see, 1t allows us to tieat the
rotating oseillator by the simple method ot polynomials We disiegard
the small coriection terms with the coefficients 8, ¢ , 1t we wished
to take them into account we should have to supplement our method of
polynomials from the theory of perturbations

On account of (17) and (17a) our differential equation (16) becomes

a‘F o 2_ 1 _m(m+1) _
R R R e
with the abbreviations
871'2 272'

We have to distinguish between two cases = A>0and A<<0 We first
consider the second case and set

82 2
—A=pt= —th (A - B) (18b)
B, like a and A, 1s a pure number

* It was first used 1n this way by E Fues, Aun J Phys, 80, 867 (1926), 81, 281
(1926)
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The asymptotic behaviour of F for p—> o then gives fiom the

equatlon (18) P’ = BgF and hence F = gxbp

Since we must demand that F shall not become infimte tor p — oo,
we choose the lower sign 1n the exponent of ¢ and set

F =¢85 (18¢)
F=e—FW - Bu), F'=ec 0" - 260" + B'0)
From this we get, by (18), as the differential equation for the new

unknown v s 1 (m + 1)
m(m
v’ - 2,8'0' -+ ,:ch(; - F—‘)) - —-——E_r-"]'v =0 (19)

so that

1Q7Q

Fic 4
The first four polynomials Q) of the oscillating 1otator, et

«® p 2 p 20~ \? P
g @ =ai- ) @ = a1 - 220+ (V) ey

2 3 i
Qpmafa- il (B (T
yly + 8) v+ 3/ 292y + 1) Y+ 3) 22y M2y 4 2)

In drawing the figure we have chosen @, = 1, e« = 10 TIn reality e« 1 mostly laager
(up to o = 40), but for such o’s the cuives would approach too clomely to each other

In the Q)"s represented we have set 7 = 0, the Q\”s for mmall values of 7 differ only
shghtly from the Qg’s

We integrate this by assuming

v = p¥ 3 app® (19a)
By substitution 1 (19) we get for the exponent y the characteristic equa-
fion (equating the factor of ayp” — 2 to zero)

vy — 1) =m@m + 1) + o« (19b)

y=3tNlm ¥ 5+ a2 (19¢)

We must choose the upper sign m order that y may be positive and v
finite for p = 0

that 18,
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The 1ecurrence formula for the coefficients ax (obtained by equating
to zero the factor of p¥ + ¥ —1) runs

O=[(y+k+1)(y+k)— a2 —mm+1)]a; . ,+[—2B(y+4)+2e2ar (19d)

It 18 a two-termed formula (zweiglhedrig) Consequently all the ax's vanish
for k> n, if we equate to zero the factor of ax for ¥ = n, v then becomes
equal to the product of p¥ with a polynomial Qn of the nth degree We
therefore set
ol o
y+n  Jm+ P+ +n+ 3]

the latter step 18 due to (19c)

Using (19b) and (20) we may write eqn (19d) in the form
2a?

Yy+n

B

(20)

@y + B + Dax = 3By + k) — «az =

Therefore
- 2 (
ap =

k
y + n) 2yCy + 1) @y + k& - 1)

(k — n)ag

(20)

This solves our proper value problem m 1s the rotation quantum, % the
oscillation quantum , both occur as half integers 1n our formula  Accord-
ing to (18b) B contains the proper value E  The polynomial component
Qn of the proper functions 1s graphically represented 1n Fig 4 for the first
values of 7

Let us now discuss eqn (20) We observe that o> 1, for /2
15, by egns (7a) and (10), equal to the ratio of the first proper value
ot the oscillation (1 = 0) to the first proper value of the rotation (m = 1),
and therefore equal to the ratio of the corresponding terms The latter
ratio may be empirically determined as the ratio of the distance between
the edges to the distance between the lines 1n a band spectrum (cf, for
example, I, Fig 106, p 429, or Fig 108, p 434), and 1s actually found to
be a large numbe1 (of the order 20) 8o long as we do not assume m and
n too large we may expand eqn (20) successively as follows, retaining
at present only the lowest oceurring power 1n «

3

== % ==
B ,\/1+(m-;%>2+”:‘i‘ l+%<m-l;%>2+n:%+
SC R

B“=a2[1-(’—”-{—‘1>2-21“—;:—‘}+ ]
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and hence, on account of (18a, b)

Jo,? (m + 1 (n+ A
(- G- )

A-E= 42w ? - wdw,
E = Const + )
P

TLL
+ (n + })7&2’1_ =+

2
Const = A — I—;L

(m + 1)
2]

So we find that, except for a constant fist term, our present H 1s
equivalent to superposing the proper value of the pure 1otation (eqn 10),
on that of the pure oscillation, eqn (7a) The constant fiust term 15 1c-
lated to the work of dissociation of diatomic molecules

We have alieady spoken 1in § 3B of the experimental confiumation of
the half-integral values of the rotation quanta , in the case of o-cillation
quanta we have to remark that no instance 1s known that contradicts
half-integral values R S Mulliken * pomnted out that a decision could
be obtained by comparing the band spectia of isotopes In the case of
BO and MgH the evidence 1s decidedly 1n favour of half-integral values
In the case of other bandst (Si1N, Cud, SnCl) the decision 18 unceitain
but seems to favour half-integral values

But eqn (20) gives more than the fiist approximation, 1t gives at the
same time in an exact form the law according to which oscillation
and rotation disturb each other in the higher quantum numbers Tor
example, we find without difficulty by the method given the termns of
the second order to be

_ 3hi(n + 3 _ 3hi(m + 3(n + 3) _ R¥m + 3t
87T 16mw 2 I PEC e

The first two members agree exactly with the two correction terms of
Kratzer given 1n I, eqn (24), p 616, if we set b = ¢ = 0 1n 1it, as we have
done just above, with the one difference that the integral quantum num-
bers 1n the eqn (24) mentioned are here replaced by the half-integirs
m + 4 and # + 4 The last correction member was omitted wn the
earlier expiession as being of no great impo:tance, but 1t 18 contained in
Kratzer's onginal paper{ The close similanty between the calculations
of wave-mechanics and those of the earlier quantum theory 18 mpres-
sively shown by this example

For the higher values of m and n 1t 15 of course more coirect not to
expand egn (20) but to use 1t n 1its origmnal form For n — o (and
also m —> a0 ) we straightway get from (20) 8= 0, thus A = 0 and H 1s
equal to the himiting value A, provided, mndeed, that we may extrapolate
our conception of a nearly harmonic attachment to this extent The

*Phys Rev, 25, 259 (1925)

(192;’% Mulliken, loc ci¢ , 26, 1, 819 (1925), of also Elis Woldenng, Naturwigs 15 265

)
f Zatsch £ Phys, 3, 289 (1920)
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hmiting value would form a point of condensation both for the edges of
the band (n —> o) as well as for the lines of the band of each edge
(m —> )

To define more closely the nature of the proper functions here intro
duced, we follow (18¢) and (19a) by writing

F = o= 1Q,

where Q 1s a polynomial of the nth degree, which 18 completely defined
(except for a multiplying constant) by the recurrence formula (19d)
By substituting v = pQ 1n the differential eqn (19), we easily find,
talking into account (19b) and (20),

PQ” + 2y — Bp)Q + 2B7Q = 0
If instead of p we introduce z = 28p as the independent vaiiable and use
dots to denote derivatives with respect to z, 1t follows that

zQ + By — ) Q+nQ =20 (21a)

This differential equation may be compared with that of the so called
Laguerre polynomial of degree % (see § 7 et seq )

zy+ (1 -2y + ky =10

By successive differentiation of the last equation we find 1mmediately that
the oth derivative of y, which we shall call Q, satisfies the differential

equation
2Q + (¢ +1 -2)Q+ %k -2)Q =0 (21b)

If we make ¥ — 1 =n and 2+ 1 = 2y, this equation becomes (21a)
Following B Fues (loc c¢it) we may therefore represent our polynomial
symbolically as the ith denvative of Laguerre’s polynomial of degree
k = n + 2, m which, however, ¢ = 2y — 1 1s not an integer

‘We now turn to the other of the two cases to be distinguished n
eqn (18a), viz A>0 By setting 82 = + A\, we find asymptotically
from (18) that

F = gt

Both asymptotic solutions are here admissible, since both remain finite
Accordingly we must assume 1n place of (18¢)

F = ¢80, + 70, (22)
and 1 place of (19) we get the differential equation (the upper sign
applyimng to v,, the lower to v,)

"oy , 2_%__]_.)_m(m+1)] _
V" QB + [ac <P s —a v=0
Investigation of the zero point gives the same value of y as 1 egn
(19¢) with the same choice of signs We thus have one particular
solution v; or v, fimite at the zero pont But these solutions, which are
by the way essentially identical after multipheation by e**f, are not, as
before, polynomials The recurrence formula (19d) which holds even
now 1f we replace — 8 by % 48 1n 1t, cannot be satisfied by real values
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of 8 Thus our power series do not cease at a particular texm but are
transcendental functions At the same time B remains indefinite n
the case A = 0 we have no discrete spectrum of proper values, such as
before wn the case X < 0, but a continuous spectrum whach at A = 0 follows
continuously on the limit of the duscrete spectrum

For every proper value A formula (22) furmshes a cornresponding
proper function, the finite value of which 1s ensured at p = 0 by owm
choice of v,, v,, whereas 1ts finite value at p = w has been proved
asymptotically

‘We shall come acioss sumilar conditions again when dealing with the
Kepler problem a disconfinuous spectrum merging into a contmuous
spectrum, the first being dominant in the hydiogen senes, the sccond
more especially in the photo-electric etfect The fact that Schrodinger’s
theory yields both spectia simultaneously and by a single mathematical
method 1s 1ts paiticular virtue The interpretation of the continuous
spectrum according to the earlier quantum theory was given in .ifombawu,
Chapter IX, § 7 We here go no further than showing that a simila
interpretation 1s possible on the basis of wave-mechanics

In eqn (15) B — f(p), which 1s the total energy minus the potential
energy, may be claimed as analogous to the kinetic energy of the election
If we msert f(p) from (17), neglecting the anharmonic correction terms,
we have when p —> ®

11 ;
E]\m=E—A+B(p—§P)—>]u—A

But 1n the case A>0 we have, by eqn (18a), that & — A>0 Thus
the electron can (in the language of the older quantum theory) teach
mfinity with a finite velocity , that 1s, its attachment to the molecule 1s
destroyed, and we get electron-emission

The advantages of the above assumption (of Kratzeir) for the nearly
harmonic oscillator become particularly mamifest if we compare 1t with
the rather more direct assumption, also used by Schiodinger,* io1 the
pure harmonie oscillator  In the latter we set in place of (17)

flo) = A + 4B(p — 1y

and we get 1n place of (18), with the abbreviations used earlier for A and «

d‘F m(m 4+ 1
—d-p_i-'- )\—a.2(p—1)3——’?_-—)}F=0
Simce the asymptotic behaviour 1s determined, as i § 8, A, by the factor
~Zp - 12
6 2 ,
we set,

—%p —
P=oq 3 1)’,0

*E Schrodinger, Second Communication, Ann_d Phys, 79, p 524 COollected
Papers, Quantisation as a Problem of Proper Values, Part IT
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and get as the differential equation for »
v — 2a(p - L)v +{A—oc—ﬂ(?"—p;—'—1—)}v=0

With the assumption (19a) we get for the exponent y at the pomnt p = 0
the equation

vy = 1) — m(m + 1) =0,
an admissible solution of which 18 y =m + 1 But the recurrence
formula for the ax's no longer has fwo terms, but three, so that the
simple polynomial method fails For we get for the coefficient of

pY+E=1 o gm +k

[(m + &+ 2m+Fk+1) - mm+ 1)] arypr + 20(m + & + Lag
+ [A =0 = 20(m + k)lag -, =0

Schrodinger (loc ¢t ), and Fues (loc cut ), seek to escape by introducing

¢ = p — 1 and expanding the rotation term r_n_(ﬁz,;z—f_l_l) 1n powers of £ and

taking up the higher powers of ¢ in the theory of perturbations which
1s necessary not only here but also in dealing with the anharmonic
oscillator

E Duatomsc Molecules, Translation, Rotalion and Oscillation

‘We now take a further step in the direction of approximating to the
actual conditions of the molecular model, by considering two point masses
my, m, with Cartesian co-ordinates z,%,2;, and z,y,2,, which exert an
nfluence on each other owing to the potential energy V of their relative
positions  Then, by § 1, eqn (12) the wave-equation runs

h? AW A2 A2y h2 A2 2w YA
@ma@+mﬁ&ﬁ+§%ﬁ@+ﬁﬁﬁﬁ (23)
+(B - V)& =0

Just as 1n ordinary mechanics the kinetic energy of a system can be
resolved into the translational energy of the centre of inertia and 1nto the
energy of motion 1elative to the centre of inertia, the diffezential expression
of wave-mechanics may be separated into two parts by introducing the
relative co-ordinates z, g, 2, and the co-ordinates of the centre of inertia
& m, ¢ Let us define

T =z - T

Yy Yi— Y.
2 =2 — 2

(my + m)é = Mz, + My,
(my + my)n = MY, + Mmay,
(my + M)l = m 2y + myz,

¥ = y(zyz) x(énd)

and set

From the scheme
L=l+_ﬁ_lll__1+_m_l
dm, d  mg+ my €| 0w,  dx  my + my dE



28 Chapter I Introduction to Wave-Mechamcs

1t then easily follows that

1w 1 3 W, om
m; 02,2 = m, 22X m, + my 0T ¢ (my + my)? M.z
1y 1%y 2 ddx,  m oV

Ty 3mgd | my 0T my + my dT Ot | (my + M )z d¢
In forming the sum the middle terms on the right cancel out and we get,
using the abbreviation [ef I, Chap IV, § 4, eqn (5)]
% 1,1 = My (24)

my . omy K=+ m,

m place of (28)
1%y My % 1 (azx azx 22 x>
p\dz? © dy? + bz‘)x my + mg\E + * )Y

+ 5ZE - Viya)ux = 0

(25)

The separation into the two components y and x can now be performed
without difficulty since, as indicated, V 1s to depend only on the relagive
co-ordinates zyz For if we imagine eqn (25) divided by yx, only the
middle term would contamn the co-ordinates &, u, ¢ This term must
therefore equal a constant If we call this constant — k%/(m,; + m,) and if
we define another constant E; (energy of translation) by means of the
equation

h? k?
B =8t my + my
we get the two equations
2 32}( % 2
Dé’z+ +3§z+kx 0 (26)
D2ll/ B2l[/ 1[/ 81r p,
3m2 ayz + bzz (B - B - V)‘/’ =0 (27)

The second of these equations agrees essentially with eqn (15), except
that the “resultant mass " x has taken the place of m and E — Ey, that s,
the energy remaining for iotation and oscillation naturally replaces the
former E  We therefore no longer need to concern ourselves with (27), as
1ts proper values and proper functions have alieady been treated under D

But eqn (26) 1s also famihar to us It 1s the wave-equation of the
mdividual pomnt-mass (here the centre of mertia) moving under no foices
As we saw 1 § 1, 1t has a continuous spectrum of proper values all
positive values of %, that 1s, all possible velocities are admissible If we
take the z-axis as the direction of the veloeity, the corresponding proper
functions are given by e * =

The last remarks apply, however, only to the case where the molecule
happens to be in unlimited space If 1t 13 moving in the interior of a
cavity (Hohlraum), restorng forces occur on 1ts upper surface, whose
potential energy would have to be taken mto consideration in (26) The
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pectrum of proper values (of the velocities) would, n&épf":ﬁchﬂw_j(w
nto a discrete spectrum, although in the case of a Jarde ;mqlcks,xau;e,\
vould be very close, the nature of the proper functions would also have
0 be essentially modified

§ 4 The Oscillator according to Quantum Mechanics

Even before the first Schrodinger paper appeared W Hesenberg
levised a wonderful method—we follow Heisenberg * in calling 1t that of
juantum mechanics—which leads to the same results as wave mechanics
and goes even beyond 1t, since 1t gives not only the proper values or
snergy values, but also the Rules of Selection and Polarsation and,
generally speaking, furnishes an unequivocal method for answering all
questions relating to intensity ~ Through this wave-mechanics has
received a powerful impulse and has, as we shall see m the next
section, been able to translate these more extended results into 1its own
language For this reason, as well as on account of the gieat theoretical
mterest of the subject, we must next occupy ourselves with the 1deas of
quantum mechanies As the simplest example we here again choose the
problem of the linear harmonic oscillator

Let the position co-ordinate of the oscillator be g, its momentum
co-ordinate p  Its possible stationary states, which are hnown to us
from spectroscopy, form a discrete series and are characterised by ceitain
values of the parameters denoted by E, Ez, which have the
dimensions of energy, and, as we shall see, can be uniguely allocated to
the classically defined energy of the oscillator Whereas these E’s foim
a single discrete series, the ¢’s and p’s are quantities bearing two indices
(942> P41), for they are to correspond to the transition from the sth to the
kth state The radiation emitted in this transition 18, we assume, mono-
chiromatic and follows the law

hy =B, — B @
for which we may write

ou. = 2B, - By (12)

where Wy = 2rrv,k

Hguation (1) 1s Bohr's frequency condition It 1s not, properly
speaking, derived here but 1s implieit in the fundamental definition
of the quantities defining state (phase quantities) Empirically 1t has
1ts source 1n the fundamental law of spectroscopy, the Combination Prin-
ciple, which finds mathematical expression in the difference-relation (1)

*W Hesenberg, Uber quantentheoretische Umdeutung kinematischer und
mechanischer Bemehungen Zatschr £ Phys, 83, 879 1925), Born and Jordan, Zur
(ng:nmecﬁmﬂ]:{, ZZ}C t:r.t ,3 534%578’5(81 9(216926 s Bolrsn, m:lslsnberg, and Jordan, Zur

n! echani! cy ee also ew Quant
Birtwistle (Oa.mbn:ige Umv’erm'ty Press) ) Quantum Mecharmes
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Corresponding to the fact that the radiation w,; 1n the transition ¢ — 4 18
monochromatic the ¢'s and p’s are assumed 1 the form

Qo = G’y k= et @

(in this whole section 7 denotes N =1)

Whereas the time £ 18 still treated as a continuous vanable, so that we
can differentiate with respect to 1it, the p’s, ¢’s and all other phase
parameters (or state parameters, Zustandsgrossen) appear as disciete
quantities, which contorms with the natuie ot the quantum theoty as a
theory of discontmuities We have alieady mentioned the “ network ™
(cf the conclusion of I, Chap IV, § 1, p 202) of states possible according
to the quantum theory, and the sizes of the meshes of this netwoik,
which are given by Planck’s constant 4, but we made owr calculations on
a continuous basis, since we defined our phase quantities not only for the
pomnts of the net but also for the imterveming pomts In quantum
mechanics, on the other hand, in the form in which 1t was ongmnally
concerved by Heisenberg and his collaborators, only the intersections of
the net are considered and distingmshed by the mntegerss and A The p’s
and ¢'s are defined for them alone In the case of the osecillator we have
to do with a two-dimensional net, 1n a problem nvolving seveiral degrees of
freedom we are concerned at first with a net of more than two dimensions
In mathematics a network of numbers of this kind, which we ae
acquainted with in determinants, 15 called a mafriz  The “ calculus of
matrices”’ called mto action by Hewsenberg, and elaborated by Boin,
Heisenberg and Jordan for the puipose of dealing with quantum
problems, discloses itself 1 the ight of the above remarks as a method
of calculation appropriate to the nature of quantum problems

To indicate the relationship between Heisenberg’s method and those
of the earlier quantum theory we call to mind the Fourier expansion of
the state- or phase-co-ordinate ¢ mn the th quantum state In general
this expansion consists of a serles of coefficients a,;, which does not break
off at any point , these a,;’s are analogous to the a,;’s that occur n (2)
In accordance with the Correspondence Principle these Fourier coeflicients
were formerly used as the best available means of calculating intensities
We shall see that our present a,,’s serve this purpose perfectly, so that we
may regard the method of matrices as a refinement of the classical theory
of correspondence Naturally, the analogy with the Fourier series is
incomplete 1n many respects, for example, 1 the manner 1 which the
Qs are calculated

Consider the matrix of the ¢'s (eqn (2)) a httle more closely The
a,;’s are complex quantities which, as in optics, embrace the amplitude
and the phase

Qip = | Qg | 7By
Gie = | Qux | /ot +Ei) (20)
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By (1a) we have the following relations between the w,;’s
Wiy = — Wy (3)

If we deswre the same behaviour for the phases B,;, that 18 change of
segn when ¢ and % are exchanged, we must have

gy = a’:k' Qrr = q:k (33‘)
whereas we assume the opposite behaviour, that 18 equality of sign for
the amplitudes which by their very meaning are positive The stars in
(3a) denote the transition to conjugate imaginaries That 1s, the matrix
of the ¢’s (and likewise that of all other phase quantities) contains con-
jugate 1maginaries at points symmetrical to the diagonal , 1t 1s, to use the
customary term, a Hermatean matriz

We have now to define the rules for calculating with matrices It 18
clear how this 1s to be done for addition and subtraction The matrix
a * b, for example, 18 formed by adding or subtracting all corresponding
members a,, and b,;, It 1s also clear how a matrix a 1s multiplied by
an ordinary numerical factor ¢ Each individual term a,; has to be
multiplied by « But what 1s the product of two matrices to signify, for
example, the product of the two matrices p and g represented in (2)?
We take our cue from the rule for multiplying determinants and define

PQu = zPszQUe (4)
{

The appropriateness of this definition becomes clear i1f we reflect that
the complex of vibrations given by the w,;'s 1s fixed by the nature of our
quantum mechanical problem Whatever the calculations we may under-

take we must remain within the realm of this complex of vibrations If
we 1nsert (2) 1n (4), we get

P = E 110330001 T “1)t
7
But by (1a) we have
2
v+ o = (B, = By + By - B2 = 0y
hence

(PDr = (2 b,lalk) 3%t
i

Thus the product pg, in virtue of our multiplication rule (4), belongs
to the same group of vibration states as » and ¢ :ndividually

But our multiplication rule leads to a further result we no longer have
pg = qp ! Foreqn (4) states that

(@ = G * (B3 (42)
4

As, however, 1n ordinary calculations, the commutative law 1s confinually
being used, 1ts absence here in calculating with matrices produces a



32 Chapter I Introduction to Wave-Mechanics

hiatus This can and, indeed, must be bridged over by a new conven-
tion,* which 1s given by the ‘Commutation Law ™ (7
Relatwon)

h
Pg == g3 ®)
where 8 18 the ““ unit matrix ” defined by
1, fe=%
= {o teak (5a)

But the postulate (5) 1s to hold 1n each case only for two canonically
conjugate quantities (cf I, note 4, p 545, eqn 20c), that 1s, besides for
p and g themselves, also for any two quantities which are connected with
the variables p and g by a canonical transformation (201d p 546) On
the other hand, 1n the case of two quantities of the chaiacter of the ¢’s or
two of the character of the p’s the right-hand side of (5) must be 1eplaced
by zero so we may say that two quantities of the same kind may be
interchanged or are commutative t

These few rules are already sufficient to make the problem of the
oscillator accessible to the calculus of the matrices To deal with other
problems and to formulate quantum mechanies generally 1t 1s naturally
necessary to go much further, for example, to differentiate one matrix with
respect to another, questions into which we shall not enter here

In the following calculations we shall take our stand on the relations

1
g+ w’g=0 (6) p=mg (7) H = g-(p? + mPo’g?) (8)

which we take directly from classical mechanics

The first of these 1s the classical differential equation of the osecillator,
the second the usual definition of momentum, the third the classical
expression for the energy as a function of the p’s and ¢'s (H denotes
“ Hamilton's Function,” as 1 I, Chap IV, p 194) Asineqn (1) of the
preceding section w, 18 the classical proper frequency

This close link with classical mechanies 18 characteristic of quantum
mechanies It 18 not the axioms but the methods of calculation that are
altered and adapted to the discontinuous character of quantum problems
The following discussion will show that these methods of calculation,
however strange they may appear at first sight, are aw jfond quite
elementary and lead by the most direct route to the object 1n view

Egn (6) wntten down for a single element ¢k runs, if we insert g
from (2),

(@ ~ 0Z)quz = O

*In this convention Heisenberg was onginally guded by a ‘ summation law ” of
Thomas and Kuhn, ¢f Chap II, §8, C

+ An introduction to the calculus of matrices 1s given by M Born, Probleme der
Atomdynarmmck See also Birtwistle, The New Quantum Mechanics (Camb Univ Press)
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From this we conclude that
sither @ =0 or ogz= T o,

or, expressed differently all the g,.'s vamsh with the excepiwon of those
Jor which w,p = + @y 0r = —

Tt 18 convenient to distinguish these two possibilities by using a special
order m the numbering of the matrix elements, as this order 1s still quite

open to choice 'We shall take

w, = + w, corresponds to the transition ¢ — 12 — 1} ©)
=1+ 1

Wy = — W » » »»

that 15, 1n the former case let & = ¢« — 1, and m the latter k¥ = + + 1
‘We have correspondingly for the ¢ s

Q=0 for k+13x1
G *0 fork=213x1 (92)

With this convention for the numbering of the matrix elements, then all
the duagonal elements (k = 1) vanish in the matrix of the ¢’s, and also all
the elements not adjacent to the diagonal (for which, therefore, |k —2[>1),
only the two series next to the diagonal contain ¢’s that do not vanish

Concerning eqns (9) 1t must be added that they may be summarised
and generalised n the form

o = (0 = Ky (9b)

The values of the oblique rows adjacent to the principal diagonal in
the matrix table of ¢’s follow from the commutative law (5) From (7)
we get

P = Mjo,Qsz (10)

Using the multiplication rule (4) or (4a), respectively, we obtain from (5),
with & = 1,
h

mg} (©19u9n = Gawnds) = 5—
4 2. T 2 2 27‘_‘7

or, written more conveniently, with due regard to (3),

]

D ouudu = - e (108)
L

The summation with respect to I becomes reduced on account of (9) and
(92) to two members, namely, to those for whichl =1 — 1, w,; = + o,
andl =1+ 1, 0; = — w; Hence 1t follows from (10a) thait

h
Toyi—=b Gr=1 s = T s4+1 i1, = — Temo,
Q

VoL IL—3
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The products on the left-hand side are by eqn (3a) real and positive,
namely, equal to the square * of the absolute value of the matrix elements
in question  So, m place of the preceding equation we may write
IQi+1:1I2_|gl.t—1|2=Z£_w—o (11)
From this we conclude that the |¢|?’s form an aithmetic series, which 1s
unlimited 1n the positive direction but breaks off in the opposite direction
as 1t can contain only positive terms  The i1ndices at which we break off
the series 18 still open to choice, as we have so far decided only upon the
relative values of 1, %, but not upon thewr absolute values We may
therefore agree to make ¢,, , the last non-vanishing member of the series,

and g, ., equal to 0 With2 = 0, 1, n eqn (11) then gives
h 2h nh
lqnol? = drme,’ lg: = drme,’ | @n,n—1 P = 41;mw—; (11a)

In the sense of eqn (2a) we may say that this fixes the amphtude factor
|a| but leaves the phase 8 undetermined Taking into account (3a) and
(9) we write *

o= o
TNW,
T (12)
qn. n+1=\/%ﬂ6’(_u"t+ﬂ”n+l) [
’ TMW,

‘We now bring 1n the energy equation (8) In 1t Hamilton’s function
H 15 1tself a matrix but, as we shall see, one of specially simple construc-
tion We call its elements H,, 1n general, so its diagonal elements
(1=k=mn) are Hy, By (10) and (4) we get, when : = & = n, that

n 2
Pp =—m z O 1dn10inqin

7
and so, by (3) and (3a)
.p-:zm = m? z w;’tl I Qnz |*
14
Accordingly the second summand 1n H becomes

mrwg iy, = M E wo® | g |2
{
It therefore follows from (8) thait

m
Hon =g D (@2 + o7 | g
[]

* The square of the absolute value of the matrix elements 1s called Norm i German
+ Cf with formula (12) the formula for gmaz Which occurs 1n the earlier quantum
theory of the oscillator and 1s quite sumilarly constructed
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This sum also becomes reduced to two terms on account of the factor
|gn1]? namely to those for which 7 = # * 1, and, on account of (9) and
(11a), yields

Hyn =m0 ((gmn—1 [P + [gnnsal) = 0+ DR5E (19)

Before we discuss this remarkable result we shall supplement our
previous discussion by showing that the commutative law for the ¢’s and
the p’s 1s 1dentically fulfilled in the cases 2 + %, and that all elements H,,
vanish for ¢ = %

For 1 = n, &k = n + v, v + 0 the commutative law (5), by (10) and (4),
requires that

z (‘”lenZQI, n+v ™ 9, n+ 091 n + v)
7
= E (@0n1 = 04 n+0)0n0t n4s =0 (14)
7

On account of the factor g,; again only the terms 7 = %z — 1 and
l=mn+1 of the sum come 1nto question TFor l=un — 1, re-
membering that we have excluded » = 0, we find that q; , 4, differs
from zero only when v = — 2 In this case, however, the first factor of
the sum on the right hand side of (14) becomes, bv (9), equal to

OUpyne—1 = Wpo] pe. = W) — Wy = 0

For I = n + 1 we get correspondingly that g; , ., does not become
zero only when v = + 2 (v = 0 again being excluded) But, by (a), the
first factor of the same sum runs

On,n41 = Ongnte =— 0y + 0, =0

Thus ows postulate (14) 1s actually identically fulfilled for all s and »'s
Concerning the matrix elements H,;, the same calculation that led to
(18) gwves forr =m, bk =n-+v,v =0

m - .
Hm ntv =g z (‘“o‘ — Ong, g+ 2)qn1dL ot (10)
3

On account of the factors g,; and g; » 4 » all members of the sum again
vanish, unless / = » ¥ 1 and simultaneously v = £ 2 But then the
first factor vanishes For we have in these two cases, by (9), that

_ - - _— = 2
OpOp v = Op,nF 10 F 1,0 F2 = @

Accordingly all H, , ,.'s become zero for any m's whatsoever and
v+ 0 We may also express this by saying that H s a diuagonal mairiz

But this simultaneously implies that all elements of the mairiz H are
constant wath respect to the time For the dependence on time, given mn

our expression (2) by ¢“ix, of course vanishes for 1+ = %, since, by (1a),
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o,z becomes equal to 0 Our proof that H 18 a diagonal matrix thus
simultaneously 1involves the proof of the energy law

Further, we must convince ourselves that the initially introduced
“ energy parameters ” E,, Ei, may be 1dentified with the elements H,,,
Hy, of the energy matrix  The following verification must here suffice
By (1a) and (9b) we have

h wyh
Ez—Ek=w1L_2;=("’"k)’§%;

But, by (18), H,, — Hz has the same value From the differences of
the E’s we may now pass on to the E’s themselves, which we normalise
with respect to an additive constant (so far left undetermined) by using
(13) and setting

En = Hun = (0 + g (16)

But this 15 exactly the wave-mechanical proper value of eqn (7a) § 3
The wave-mechantcal proper values and the quantum-mechanical diagonal
members of the energy matriz are wdenfical (in this example and also
generally) In contrast, however, with the older quantum theory of the
oscillator with 1ts “ whole” quantum numbers there 1s the repeatedly
emphasised distinction of “ half ’-quantum numbers

Which of the two methods 1s the sumpler, that of wave-mechanics,
which 1s analytical, or that of quantum mechaniecs, which 1s algebiaic?
If we leave out of account the fact that analysis 18 our famihar weapon,
we must say that the algebraic method of quantum mechanics uses
fundamentally more elementary operations, calculating with a finite
number of discrete elements 1s easier, i principle, than calculating with
a contmuum On the other hand, when dealing with problems involving
several degrees of freedom the 1ndices 1in the calculations with matrices
swell to such a number that 1t 1s difficult to keep a clear view and the
formule become unmanageable In general, moreover, difficulties arise,
such as have been overcome 1n only the most recent accounts by Hilbert
and Weyl * In actual fact the most important problems (Kepler motion,
Zeeman effect, Stark effect) were first fully solved only by means of
wave-mechanics  The state of affairs 1s much the same as 1n the theory
of functions, where the specifically elementary methods df Weierstrass
are more cumbersome than the infinitesimal methods of Cauchy and

* We are 1eferring to the so called “ symmetrising ”” of the aggregates 1n p and ¢
that occur in the Hamiltoman function Since m classical mechanics, from which the
Hamiltoman function was taken over, products such as pg and denote the same,
whereas In quantuom mechames they do mof, the method a.g_gpted 1 quantum
mechanies 18 to replace pg by the symmetrical and therefore one-valued expression
#(pq + ¢p) A corresponding method may be defined for any powers of pg and also
for any arbifrary functions In the case of the oscillator, for which the Hamiltonian
funetion (8) contains only the squares of p and g which are, of course, :n themselves
symmetrical, this difficulfy did not oceur
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Riemann We may perhaps express this by saying that the method of
matrices has the advantage of being simpler in principle, but wave-
mechanics 1s sumpler 1n practice and keeps the problem under clearer
survey

We further ask which of the two methods approaches completion the
more closely? Here too we must give quantum mechanics the preference,
for 1t has given us not only the proper values of the osecillator, but con-
currently, by a uniform method, also the selection rules [eqn (9) and (9a)]
and the amplitudes of emission [eqn (11a) or (12)] This proves quantum
mechanics to be a really sufficient, logically complete method of caleulation
and so distinguishes itself essentially from the earlier quantum theory, m
which, 1n order to airive at statements about intensities, we had to enlist
the aid of assumptions which accorded with the correspondence principle,
these assumptions had come from a realm quite different fiom that of
quanta The wave mechanics that we have so far developed does not go
beyond the old quantum theory, 1n that 1t furnishes us with the proper
values and proper functions but says nothing about intensities  We shall,
however, see in the next section that 1t 1s able to match this advantage of
quantum mechanics The correct standpoint i1s to r1ecognise the nval
nature of these two methods which give identical 1esults, and to see 1n
them a reflection of the two rival methods of optics, that or light-quanta
and that of waves

As stated at the beginning of this section the matiix g represents the
transition from one state to another accompanied by the emission of radia-
tion We are, however, also deeply interested 1n the states themselies,
concerning which we can get considerable knowledge by experimental
means, such as, by the method of Geilach and Stern In classical
mechanies and electiodynamics there 1s no antithesis between states and
transitions  The oscillator radiates classically according to the measure
of 1ts present state Quantum mechanics, the premises of which link up
closely with classical mechanies, associates the emission with the transimons
q,; For the states themselves quantum mechanies 1s left only with the
diagonal elements g,, But these vanish by eqn (9a) Conceining these
states quantum mechanics makes only the assertion (true 1n itself but not
sufficient) that they are radiationless In this respect 11 would be at a
disadvantage compared with wave-mechanies, which through the proper
function provides us with a detailed deseription of the states DBut we
shall see 1n § 6 that 1n this respect also the two methods can exist side by
side  The deseription of the states by means of matrices 1s, ndeed, a little
more cumbersome than that given by the proper functions, but 1n essence
1s equivalent to it

Finally we must touch on a general epistemological point  The avowed
object of Heisenberg’s first paper on quantum mechanics was to develop
a method * which would be based exclusively on relationships between
essentially observable quantities” Ideas such as “the position of the
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electron, the time of revolution, the form of the orbit ” were to be excluded
from the discussion This limitation to what 1s directly observable 1s
ultimately based on Mach’s philosophy and, directly inspired by Mach,
led three decades ago to the propagation of the so-called theory
of “Energetics,” which sought to recognise only quantities of energy
as physically given and observable quantities But to this theory of
Energetics there could be opposed the very fruitful kinetic theory of gases,
in which the positions and velocities of gas molecules, although they
cannot be observed individually, could not be dispensed with as phase-
quantities In the same way we may oppose to Heisenberg’s view-point
wave-mechanics, of which the proper functions can be individually con-
trolled by experiment just as little as the individual electronic oibits
of Bohr's theory  Doubtless the philosophic starting-pownt played a
considerable part in the success of Heisenberg’'s reasoning But we
1egard the real merit of quantum mechanics as consisting not in this
intentional 1estriction to observable quantities, but 1n the uniform fusion
of classical assumptions with the requirements of the quantum theory
The himitation to a discontinuous net of values of the co-ordinates and
momenta, g,;’'s and p,;'s, which we particularly emphasised above, has
been given up by Heisenberg himself in the later elaboiation of his theory
(ef Ch 1II, § 9, concerning the ““ Law of Uncertainty ")

§ 5 Completion of Wave-mechanics Frequency Condition Questions
of Intensity

Whereas the quantum condition (1) 1n § 1 could be replaced and
formulated more precisely in wave-mechanies by means of a simple
postulate of continuity, we have so far not been able to fit the fiequency
condition, equation (2) of § 1, into wave-mechanies To accomplish this,
1t 18 necessary to extend the spatial wave-equation into a “ time-equation ”
As a preliminary to this we shall treat de Broghe’s problem of a point
mass moving under no forces (ef the end of § 1)

De Broglie assigns to every system with energy E or the equivalent
mass 7 a vibration number v by means of Einstein’s double equation

E =me® = hy @)
Of the two assertions contaned i 1t the first 1s the law of mertia of energy
(I, Chap VIII, p 464), the second 1s Einstein’s photo-electric equation
(I, Chap I, p 45) in a form simphfied in principle  We extend our plane
wave, eqn (14) of § 1 of this chapter, mnto a vibration phenomenon mn
time by using the complex expression

U = Apgtkz —wwt (2)
Since, according to (1), o = 2mv = 2rE/h, this sigmfies that we supple-

ment our previous spatial wave-function y by converting 1t into a

space-time event
— Am

U=ye =2 3)
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By setting the exponent of (2), the “phase” of the wave, equal to a
constant and differentiating with respect to #, we obtain the ‘phase-
velocity,” which as in eqn (5), § 1, we shall call a

dx
a=-d—£=% (4)

If we insert in this the value of w from (1), w = 2mv = 2wmc?*/h and use
for the value of % that obtained from eqn (15) of § 1, we get
c? =
a = —’;)_ (O)
Since v < ¢, 1t follows from this that e > ¢
Thus the phase of the de Broghe wates 18 propagated with a velocity
greater than that of lwght
Whereas we just now referred to § 1, that 1s, to Schrodinger’s wave-
equation, de Broghe derives eqn (5) 1n a very general way from a Lorentz-

transformation between the reference system moving with the point mass
and the system of the observer

We shall now show that v plays the part of a group-relocity for our
wave-phenomenon (2) If we call this group-velocity &, we assert that

v =20, ab = ¢? (6)

For defining the group-velocity we have, as a counterpart to eqn (4),
dw -

b= & (7)

As group-velocity 1s usually explained 1n a rather specialised and unsatis-
factory way, and as we shall come across 1t often in the sequel, we here
give a method of deriving 1t based on very geneial assumptions Instead
of using the single wave (2) we start out from the wave-group

ko + €
U= j Alkyerte= - w01,
kg ~—¢

that 1s, we 1magme & continuous series of single waves superposed on
each other and of amplitude Adk, 1n which we suppose A and o to vary
continuously with % in some way But we shall call such a seues a
“group” only if the wave-numbers contained mn 1t are sufficiently near
one another , we have 1ndicated this in the choice of the limits of integra-
tion k, £ ¢ We re-write the exponent of e in the following form

bz — wt = k@ — opt + (b — Aoz — (0 — )t

This gives us
T = Ceuhoz - wot),

G = jko +e A (k) ek — koYt — (w — um)t}d L (8)
ko—e
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‘We now look for such pomts z, ¢, for which the “ mean amphtude |C| of
the group ” (not, as previously, the phase) has a constant value Since
z and # oceur only 1n the exponent of (8) we must set

(k ~ kp)x — (0 — w,)t = const
that 1g,
dr _ W —
at T -k,
But for a sufficiently narrow group this quotient has a lmiting value
independent of ¥ and depending only on %, namely
dz =% = do
@~ (@)
This proves equation (7)
b gwes us the veloctty with which the mean ampliude |C| of the group
18 propagated The propagation of the mean phase or, respectively, of the
phase of the mean pomt %,, w, of the group 1s different from this and 1s

given by eqn (4), as before
From our expression (7) we easily arrive by means of the relation

o=k = 2%“ at the formulee usually given for the group-velocity, namely
da da
b=a+km;=a-—)xd— (7a)

or to the form used by de Broglie

A6 (7b)

but formula (7) 1s obviously simpler and, on account of its analogy with
formula (4), more instructive
We have next to prove equation (6) By (1) we have

E 2r mu?
w=2ﬂ'7b='ﬁ( +—‘2—+ ) (9&)

The dots signify that to the term written down there 1s to be added a
constant term which denotes the rest-mass, and also further correction
terms which take into account the relativity varation of mass On the
other hand, we have, by § 1 (15) of this chapter,

mo
k= 211-7 (9b)
From (9a) and (9b) we form
dw = %h—ﬂmvdv, dk = %—mdv

From this 1t follows that

b= = (9¢)

which was to be proved
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In this method of deriving the formula our 1esult seems to be only
an approximation for small velocifies, since 1n eqns (9a) and (9b) we have
neglected the varnation of mass with velocity  Actually, however, eqn (9¢)
18 correct in the form 1n which 1t 18 written This 1s at once recognised
if we follow de Broglie and use relativity from the very outset

We take this opportunity of stating that in other respects de Broghe’s
original method has been abandoned in the later developments of his
theory and he himself no longer maintains 1t ¥ De Brogle onginally
allowed the wave-function to have an infinity which served in a way as
the material nucleus of the wave-system In this manner one would
lose the mathematical uniqueness which permeates Schrodinger’s later
theory 'We regard de Bioghe’s theory, as does Schrodinger himself, 1n
zhe hght of an important precursor of wave-mechanies but not its final

orm

The fact that the group-velocity b 1s less than the velocity ¢ of hight,
becoming proportionately smaller as the phase-veloeity a becomes greater,
1n 1tself shows that the dispersion of the de Broglie waves 1s normal  For,
since b < a, eqn (7a) states that da/dA>0 Consequently the mequahity

an
<0 (10)

holds for the refractive index n = c¢/a as 1s the case with visible hight for
bodies that disperse normally The expression of # = ¢/a as a funcuon of
the de Broglie wave length 1s by eqn (5) of thus section and eqe (16) of § 1

d R
More general significance attaches to the tact that the veloeis 2 of
our point-mass does not correspond to the propagation of a monochromatie
wave but to that of a wave-group It 1s not the monochioma 1c wate
that 1s the physical picture of the moving point-mass, but the uate-grou«p,
o1, as we also sajy, the wave packet
‘We now pass on from the point-mass under no forces to the general
problem of wave-mechanics Here we hikewise supplement the spatially
defined Schrodinger y-function and expand it aceording to the assumption
(3) 1into a space-time function which we shall call %
271
%= weTEt (11)
‘We here interpret E as the energy parameter that occuis i the differential
equation of the y-function and we take E 1n 1its 1ationally normahised form
(cf footnote, p 1) We have therefore to include 1n E not onlv the
kinetic and potential energy of the state in question but also the rest
energy (RBuh-energue) contained n the masses, which 1s represented 1n the
case of the individual pomt-mass by Ej = me® For only when E 1s
regarded 1n this way 1s there any sense 1n the definifion of the vibration
number v 1n eqn (1) It need hardly be mentioned that the factor

*Cf the mtroduction to his book on wave mechamnics published this year
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of 2mit 1n the exponent of eqn (11) denotes this particular vibration
number v

From the remarks just made about the way in which E has been
normalised 1t follows that V must be normalised in the same way So we
may write V more clearly as

V=B8,+U E,=mge (12)

where U denotes the “energy of position” calculated 1n the ordinary
way

The question now arises whether we can 1e-write Schrodinger’s equa-
tion for ¢ in the form of a “ time-equation ” We shall have to postulate
this 1n accordance with the optical analogymn §1  For then the u-equation
(5) which contains the time was the primary and physical datum, the
spatial -equation (6) arose out of i1t only when the monochromatie
assumption (5a) had been added But this time equation may contain, as
1n the optical case, only general matter constants and no special constants
defining state  Our parameter E, which 1s a characteristic value
(Brgenwert), 1s a state-constant (Zustands-konsiante), since 1t varies 1n
passing from one characteristic state (Eigenzustand) to another It must
not therefore occur wn the required tume equation  Or, expressed 1n other
words, the purpose of passing over to the tume equation 18 to eliminate the
parameter B out of the wave-equation We write Schrodinger’s equation
in the form (11) of § 1, but remark that everything that follows also
applies to the problems of many elections (of many bodies), for example,
meqn (12)of §1 So we start, say, from

- % Ay + Vy = By (122)

and observe that 1n virtue of the assumption (11) this equation 1s
1dentical with the time-equation

h? h du
‘We couple with (13) the conjugate equation
o, . Bodut
= Gty AW+ VU = - oo (132)
by defining %* as
. x =g
u* =y¥e * (11a)

and assume y* as the conjugate imaginary to ¢  Of course y* = ¢ 1if, as
m the example of the oscillator, ¥ 1s real In other cases, however
(cf the Zeemann effect, § 1),  1s essentially complex

This would bring us to our goal to eliminate E our of the wave-
equation and to introduce the time into this equation nstead But the
result does not quite meet our expectations For, followmg‘n from (5)
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(BEm ~ V)ym respectively, and from (14) we get (the V term going out)

(B — En)f¢n¢md7 =0

If the E's are all different from one another and if m =+ n, the integral
must vamish  This 1s the condition of orthogonality of the propes
functions For m = n the integral does not, of course, vanish We set
it equal to 1 and so normalise the proper function, whose definition
hitherto contained an undetermined multiplying constant This gives us
the general condition of normalisaton, which differs from the occasionally
mentioned special normalisations (cf, for example, eqn (12a) 1n § 2)
Making use of the * unit matrix ” (5a) 1n § 4 we embrace the conditions
of orthogonality and normalisation 1n the one formula

Jmbmtdr = um (15)

If 15 complex we shall take the reality of 3, into consideiation by
writing 1n place of (15)

and, in particular, for n = m
pr‘; dr =1 (15b)

By (11) and (11a) the 1elation

junu; dr =1 (15¢)

then also holds

Tt 15 at thus point that the essential physical hypothesis of Schrodinge:'s
theory enters, which first allows a comparison between theory and exper:-
ment the positive quaniity

p = uu®, (16)

conbinuously distributed throughout all spaces 1s to denote a density , when
multiphed by m, 1t 18 to denote the demsity of mass, when multiplied
by e the density of charge (if our point-mass 1s an electron) This asserts
that we get the correct electrodynamic actions (forces and emission of
radiation) by calculating as +f the charge of the electrom 1s contimuously
dustributed with the density ep wn space We shall discuss a possible
physical meaning of this somewhat unattractive hypothesis later (3 8)
Here we shall straightway draw mnferences from 1t
If p 1s a density, then

M= _[smdr @mn
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1s the “ moment” of this distribution of density with respect to the
co-ordinate g

Thus M, when multiplied by ¢, denotes the electric moment, for
example, for ¢ = x, 1t denotes the z-component of the eleciric moment
of our distribution of charge Now we know that the amount and
polarsation of the emitted 1adiation 1s determined electrodynamically by
calculating the time iate of change of the electric moment eM Hence
1n the part of M that varies with the time we have a measure of emussion

But we must first take up a more general and more formal standpoint
For we must speak not only of one state and of the corresponding
density p, but also of the transition from one state 2 to another m and of
the “ density ”’ corresponding to this transition

Prm = Unlm, (18)

In a manner formally analogous with (17) we form the “ moment”
associated with this transition

Mym = .[Qpnmdr = Iqu,,uf,.d-;- (19)

In making these generalisations we, of comse, lose sight of the origmal
sense of the 1deas “density ”’ and “ moment,” so that these terms now
serve only as guides to the analytical definitions contained in (18)
and (19)

In (19) we substitute the expression of % given by (11), by applying 1t
to two different proper functions n and m We get

2me
Maum = queT(En — Eplt (20)

wm = _[q%%m (21)

We call this quantity gns, the “ matrix element” of the co-ordinate g and
so hint at 1ts origin in the matrix-calculus In the next section we shall
show that the system of quantities gnm introduced in (21) 1s 1dentical with
the g-matrix treated 1n § 4

‘We first consider the indwidual state by settingm = n  Then, clearly,
(18) becomes 1dentical with (16) and (20) with (17) The density p and
the moment M are in this case constant in time and the emission of
radiation 1s nil  The proper states (the stationary orbits of the old theory)
are radwtionless

‘We next consider the transition n->m The density ppm and the
moment M,,, are then variable n time The vibration number of the
moment and hence also of the emitted radiation 1s, by (20),

v = E'_'__;_E_m (22)
Here we have Bokr's frequency condition, which (cf the beginning of this

section), like the quantum condition, fits into wave-mechanics We do
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not pietend in this way to have derwed the frequency condition, say
on the basis of classical mechanics For we had already included 1t
essentially 1n the assumption (11) which expresses the dependence of the
individual state on titme  But 1t 18 1important that we have now a scheme
of calculation, moulded on the lines of the classical theory, which enables
us to form judgments about the details of the radiation emitted, 1ts polarisa-
tion and 1ts imntensity For we conclude from (21) that if gum vanishes
for certain members n and m and for a certain co-ordinate direction, tor
example, ¢ = x, we have a rule of polarisation the transition n — m yields
no radiation corresponding to a vibration in the z-direction

If for given values of # and m gum vanishes for every choice of
q(g = =z, 9, £), then the transition # —>m 1s radiationless We nterpret
this as meaning that this transition 1s forbidden This gives us a
selecton rule

If gum daffers from zero, we regard |gnm| as a measure of the intensity
for the transifion 1 question and for the direction of polansation The
Yn's and yp’s are, of course, to be imagined normalised in the sense of
the general condition (15)

‘What holds for the tiansition n —>m also holds for the transition
m—>n By (22) the latter transition 1s characterised by the quantity
conjugate t0 Gum

amn = [ qumiidr = i (23)

so that
[gmn| = | gnm| (24)

Our measure of intensity depends 1 a symmetrical way on the mitial state
7 and the final state m—a very remarkable law which reflects 1tself in the
summation rules of Burger and Dorgelo (dfombaw, Chap VIII, § 5)

The fact contained 1n eqn (23) means 1n the language of § 4, eqn (3a),
that the matrix of the ¢'s 138 Hermitean

In mtroducing the pseudo-moment M,,, and the matrix element
gwm We have left the original ground of wave-mechanics Schrodinger,
to whom we owe the representation given in (21) of the g-matrix, has
attempted to account for their introduction by adapting them to his
original 1deas He assumes that m the transition % —m both proper
states n and m are to coexist in certamn proportions which may be
measured by the coefficients ¢, and ¢,, The state due to their super-
posttion 1s then represented by

2m 2me

S—-Ent Bt
U= Cfne? ™ + Copfmer

2m 2m
* __ % gk, SRt — Z—Ept
UT = G, Y6 F W 4 a‘;nlp;'ne )
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and we get from the original definition of density in (16)

2m
* * ~—(E,, __ E,)t
wU* = Cnln Ynrn + cmc:nlﬁml//:n + cnc;n';l’n‘l’;ne h( i ™)

2m
+ CmCn Pmifn e 7 (Fm — En)t (25)
Thus this density 1s composed of parts that are constant in time—these
do not interest us—and of two parts varying with time, that have the
common vibration number (22)
Schrodinger then forms the moment of the density distiibution (25)
by the original rule (17)

M = cqop jqz/’nv,b; dr + cmczu,( qmiradr + 2Rontmgame & 2~ (26)

Here R denotes “ Real part of” (that i1s half the sum of the complex
quantity which 1t precedes and 1ts conjugate) and g, denotes the
matrix element defined in (21), mntroduced 1n this way gam appears
as a quantity which 1s characteristic for the state arising out of the super-
position of the two proper vibrations The further deductions regarding
polarisation and intensity of emission are then the same as above

‘We have chosen an abstract and formal representation of the rules of
emission 1n preference to this apparently more picturesque * (anschaulich)
introduction of gum for the following reason

The assumption for %, which led to (25) and (26), contains the arbitrary
coefficients ¢,, ¢y  These must reasonably be interpreted as excitation in-
tensities (dnregungsstarken) of the states » and m It 1s clear that the
emitted intensity depends on the number of atoms in which the initial
state » 18 excited, that 1s, on the coefficient ¢, But by eqn (26) 1t would
also depend on the coefficient ¢y, that 1s, on the number of atoms in
which the final state 1s realised This seems meaningless and contradicts
the results of experiments, for example, those in which the energy of
electrons 1s transferred to atoms o1 molecules by collision (Elektronenstoss)
It surely 1s not true that for ¢, = 0, that 1s when the final state 1s not
excited, the intensity of the transition n —>m must vanish  Rather, there
are “spontaneous ’’ transitions also to non-excited states We are there-
fore compelled to regard the necessity for mntroducing indefinite co-
efficients ¢,, ¢m, as a weak pomnt 1n Schrodinger’'s representation of
questions of intensity

A really satisfactory treatment of these questions can be expected only
when radiation has been fixed into the foundations of the new theory t
Following Schrodinger (and also Heisenberg) we have considered 1t
sufficient to derive the radiation externally, as 1t were, from the moment

P *)Adophed from H F Biggs, Wave Mechanics, p 15, footnote (Oxford Umiversity
ress

t Cf an i1mportant paper by P A M Dirac, Proc Roy Soc, 114, 248, 1927, m
which, although by quite different methods, the 'sponta.neous trapsitions have been
successfully treated
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M or M,,, Our only basis for this is the general correspondence with
classical electrodynamaics

§ 6 Intensities in the case of Oscillators and Rotators
A The Lanear Harmonw Oscillator

‘We can now supplement our wave-mechanical treatmentin § 3, A,
so far that 1t becomes of equal value with the quantum mechanical
treatment 1n § 4

Since 1n the case of the lineai oscillator we have only one co-ordinate
g = x, we write X, 1n place of gum, so that by eqn (21) of the preceding
section (the #’s are 1real)

Instead of r we use the more convenient dimensionless co-ordinate £
fromegqn (52) m § 3

= Jaz, o= T @)
We then get N
OTpm = Enm = I_i‘/’n(f)‘l’M(E)df 3)

We show that &y duffers from zero only of m = n £ 1
With this purpose 1n view we 1ecall the analytical representation of
the proper functions ¥, Byeqn (8)in § 3 we have

1
by = mHn(f)e — &2 (4)

Hn(£) denotes the Hermitean polynomial of the nth degree, which was
defined 1n § 3 by the recuirence formule of its coefficients N, 18 a
normalising factor which 1s to be chosen so that i satisfies the general
condition of normalisation (15) in § 5 Consequently [ef (4) and (2)]

N[ T TRl - eae = Ji:sb*de = V& i =gz @®

‘We next assume that
n << Mm
and write 1n place of (3)

+ o
NaNm éam = j Gy 4 Home — £2d¢ (6)
1n which we have set

G'n + 1(5) = an(f)

Thus Gy 4 ; 18 a polynomial of the (n + 1)th degree But we can buld
up any polynomal of the (n 4 1)th degree out of the successive poly-
frormals H m the form

n+l

Gnt2®) = D (9 @
o
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just as well as out of the successive powers &9, £, én+1  The
coefficients ¢, are to be taken from 1t 1n such a way that all powers,
from &7 +1 to &9, a1e set equal to each other Some of the coefficients ¢,
can vanish (for example, 1n our case all ¢,’s with an even v vanish if % 1s
even) We nsert the form (7) mn (6) and get

n41 +
NpNm &am = 2 6 H,Hnpe ~ 8d¢ ®)
0 —x
But from the condition of orthogonality (15) of the preceding section
evelry term of this series vanishes, with the possible exception of the last
one, namely in the case

m=mn+ 1 9
In this case we have, on account of (5)
N -
nyng1 = &:lcn+1~/°‘ (10)
The converse case
m<n

1s dealt with by interchanging m and #  In place of (9) we thus find for
the condition that &5y, may not vanish

n=om+ 1, thatis, m =n - 1, (9a)
and 1n place of (10)
by = a7 (108)
AN - 1
Only the trivial case
n =mn
remains, in which
+ o -
Enn = f &ide =0 (10b)

since i, 15 even, that 1s, £421s odd n ¢

This proves the selectron rule for the harmonic oscillator We find as
1n § 4, taking 1mnto account the r1eflections at the end of § 5 all fransitions
n —> m are forbidden with the exception of m —>n £ 1

Passing on to questions of mtensity we have to calculate the co-
efficients ¢, 4, and ¢, by means of (10) and (10a) Let a, be the
coefficient of the highest power £ in H, A compaiison of the powers
&+ 1 on both sides of (7) at once shows that

An = Cp 4 10n 4 1,

that 1s,
an Qpn —1
e, == y Cn = 11
i @
To calculate the a,’s we require a formal representation of Hermite's
polynomials

VoL, 1T —4
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‘We now assert (the proof 1s given just below) that
-&
Ha(e) = (- protilo (12)

This method of representation shows that the highest coefficient a,,
which 1s obtained by successive differentiation of ¢ = €2 1s

Ay = 27 (13)
It also shows that the integral

= I :’:Hmﬂ(g)e—s-dg (14)

which occurs 1n (5) has the value
z =20 Jr (15)

This 1s proved as follows 1f we substitute for one of the two factors
H 1n (14) the form (12), we get

2= (- [ o

and by integrating by parts = times, noticing that all derivatives of
e — & vamsh at the limits { = £ o,

:v=J"‘$3dHﬂ

If, as before, we insert
Hyé = ané™ +

we get

-~

+ -
Z = ann! _[ e~ 8dé = aun! Jm,

and hence, on account of (13), 2 = 2% ! /7, which was to be proved

‘We have yet to add the proof that the polynomials H introduced 1n
eqn (12) satisfy eqn (6) of § 8 Taking (7) of § 3 into consideration we
may write this equation i1n the form

H, T 9¢H, + 2nH, = 0 (16)

The following simple proof may also be applied to other cases (spherical
harmonics, Laguerre polynomials) We set

U =g § (16a)
and form

d—u=u=—-2¢u

dg

By successive differentiation 1t follows from the formula for such
differentiation 1m the case of a product that

UBFD = _ 2+ _ 9 + 1)um @an
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But by (12
Y ( ) (- 1)71,“(%) = ¢ — £H,
and so we get
(- Drue+1 = ¢— &(H, — 2¢H,)
(- Lynum+ ) = g—fl(H,n - 4£H, + (4¢2 - 2)Hﬂ)

If we substitute these expressions 1n (17) we get (16), which we wished
to prove

The value of the normalising factor N, now follows out of eqns (14),
(15), and (5), and 1s found to be

1 - ~ ~\ —*
a2 7=, Na= (2nnr N/;-:) (18)
And so
N, a—
Na_, = J/2n
Further, 1t follows from (18) and (11) that
Cp = -%
By (10a) we therefore have
En, n—1i = %gc

To return to our original measure of intensity on, m Wwe use eqn (38)
with m = » — 1 and take eqn (2) into account We find

n hn
N Trming (19)
and, of course, simultaneously

h 1
Tn n4p1=Tng1 n= _Z%ﬂ:%uo_) (199')

But these values are identical with the values |gn,n — 4] and |gn, a2 4] n
eqn (12), § 4 In the same way our eqn (10b) which we may also write
1 the form

Tnn=0 (19b)

1s 1dentical with eqn (9a) of § 4, with1 =k =n

‘We thus demonstrate 1n our example what was generally established
by Schrodinger * and Hckart,t namely that the methods of quantum
mechamics and wave-mechanics lead to the same resulls mot only jfor the
energy values and the proper values but also for the intensities

*®E Schrodmnger, On the Relation between the Quantum Mechanics of Heisen-
berg, Born, and Jordan, and that of Schrddmger, pp 4561 of Collected Papers,
Blackie & Son, Ltd The onginal German paper 1s Ann d Phys, 79, 734, 1926

+C Eckart, Operator Galculus and the Solution of the Equations of Quantum
Dynamies Phys Rev, 28, 711, 1926
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We now fill 1n a gap which was left at the end of § 4 It seemed
theire as 1f quantum mechanies could grasp the transitions but not the
states of the oscillator The states are fiist described 1n quantum
mechanics by the diagonal elements ¢, » of the matrix, which vanish mn
the case of the oseillator  In wave-mechanies these elements denote the
“ moments of the first order” of the charge distribution ? But in
wave-mechanics we may also form the “ moments of higher order,” for
example

+ @ .2

R W (19)
This guadraticc moment and all other moments of even order do not
vamish Correspondingly, the diagonal elements of the matrix of all even
powers of ¢ do not vanish The totality of these moments can exactly
serve to characterise the state 1n question in the language of quantum
mechanics [By a famous theorem due to Stieltjes any arbitrary dis-
tmbution of masses ¥(x) can be uniquely determined by the totality of
their moments] For example, we find for the integral in (19¢) by the
simple method given at the beginning of this section

N%l(?)n n = jGn + an3 - §2d§= Can,s

where ¢, denotes the coefficient of H,, 1n the expansion of G, . , = £H,
in terms of the polynomials H, This coefficient ¢, may easily be
calculated fiom the highest coefficients of the polynomials H,, H, 4 ,, and
H, 4+, It 1s obvious that this analytical method of calculating the
quadratic moment 1s much simpler than the corresponding calculation of
the matrix calculus It 1s also clear that the description of a state by
means of a single continuous function of state (phase function) b gives
a clearer view than the desecription by means of the infinite series of
moments to which quantum mechanies leads

B The Rotator wn Space

Let the co ordinates of the rotator be 4 and ¢ as 1n § 8, B, the
rectangular co ordinates of the 10tating point-mass—which we shall call
£, 1, { and at once connect them as complex variables—are then expressed

as follows
E+p=asmnbed, §=acosb (20)

‘We bave written j for £ 2 1n order to distinguish the indefiniteness of
sign that occurs here from one that occurs later The proper functions are

o o = 35, P (008 O)e 20t (21)

The ‘‘associated spherical harmonies’ P* are taken as normalised in
the usual way, namely in accordance with the eqns (12) and (12a) of § 2
On the other hand we take our i as normahised 1n a rational way “to

unity,” according fo eqn (15b), § 5, on account of which we added the
normahising factors Ny, Ny mn (21) We determine Ny and Ny m such a
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way that we normalise the P%’s and the ¢*#’s separately to unity, that 1s,
we not only demand that

“‘l/'m,,., l/‘m ’der =1, do = sin6dfdp (22)
but also that
+1
j [Ph(x)?dz = N;, = =cosf (23)
-1
and
[, o= mtag = G = - (282)

The conditions of orthogonality 1equuie [ef (15a) in § 5, where now
the simple indices # and m are to be replaced by the double indices m, u
and m', p] that

j¢m; ;4¢’7n, udo' = 01

except when p = p’ and at the same twme m = m' For pd p this
equation, 1n virtue of the integral over ¢, 1s fulfilled, for p = p' 1t
requires that
+1
P‘“ b (@) P (z)dr = 0, m £ m (24)
It must be particularly emphasised that we do not need to prove this
equation by means of special calculations with spherical harmonics, but
that 1t follows 1mmediately from the general theorem of the previous
section on the orthogonality of proper functions
To calculate the normalising factor Ny we must have a formula to

express the P, s The following 1s best suited to our purpose

PL(®) = Pm(@) = gy 2 (e ~ 1y (25)
from which, by (12) of § 2, 1t follows that
1 — 2wl gm+ne o -
Pite) = g atat - (252)

It 18 immediately clear that (25) fulfils the normalising condition (12a) 10
§ 2, but we must also show that (25) satisfies the differential eqn (2) of
§ 2, which, with y = P, runs in our present symbols

A - 2%y’ — %2y + m(m + L)y =0 (26b)
Similarly as in (16a), we set % = (22 — 1)» By a single differentiation

we get
(#? — 1) = 2mazu



54 Chapter I Introduction to Wave-Mechanics

and by successive differentiation m + 1 times
(@2 — Lyum+ 2 4 2m + 1)zwm +D 4+ m(m + 1)ut™
= 2mautm +1) + 2m(m + Lul™

If we collect terms and write u(™ = gy, by (25), then (26b) actually

results
To calculate the integral that occurs in (23), that 1s, the square of the

normalising factor Ny, we form, by (25a)

2 1 +2 an m,
N = WJ_,GMWMH(”Z ~ Iy @)
i which

dm +#
Gmn = (1 = PYrmm@® - )™,

the highest term 1n G 18 az™ + # with

a= (- 1)m@m — 1) m— u+ 1) = (- 1)“(”52?)#), (28)
By successive integration by parts we get from (27)
2 m (m -+ laf+1
N;=(-1) +F‘W:;)_')3_.j _1(m2 - 1ymdx (27&)

[The factors 1 + z that occur just suffice to make the terms without
integral signs vanish ]
Now

+1 +
Im = J. (z? — Lymdz = j
-1

1 +1
(@ = Ymatda - [ - 1o
-1

1+ 4d 1
= ﬂn.“ _lma—m(ﬂ - DAz — gm—y = T gpdm T Im—
satisfies the following recurrence formula
2m
m = = gy ifme
On account of g, = 2 1t follows from this formula that
o m 2m(@m — 9)(@m — 4) 2 o (2 1)
m= Y g En-nEm-5 3 2=(-V"2 Grry

and hence fiom (27a) and (28) that

N2 = 2 (m+p!
Im + 1 (m— )

and, 1n particula:, for p = 0 we get the well-known formula

(30)

2
N = ama T (302)
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The total normahsing factor, which 1s equal to the product of N4 and
Ny and 1s to be denoted by Ny, ,. 1s given, by eqns (30) and (28a), by

2 4=  (m + p)!
mE=0m+ 1 (m - p)!

(31)

‘We now come to the question of intensity and polaiisation in the
case of the rotator The basis 1s again given by the matrix elements
of the co-ordinates, namely of the rectangular co-ordinates (20)
Logically, we should now write these with four elements

Lo mwr and (€ + g, m'’
But we easily show that the former and the latter differ from zero only if
p =p or pu = pu*l, respectively (32)

so that after the respective value of p’ has been inserted we may adopt
the abbreviated notation

Lnm (W =p) and (¢ + j0)mm (W =px1), (32a)

1n which the two values p' = u £ 1 may be associated with both signs of ;
The proof of (32) consists 1n the fact that the matrix elements for
¢ or £ + jyy contain the following integrals of ¢ 1espectively

2 2-
j et W — F')¢d¢ or j- e £ U — F’)¢d¢
] v

They do not vanish only if
p—uw=0 or p—-py==1x1

respectively, and then their value 18 2r This proves the selection
rule (32)

But this has simultaneously furnished us with a “rule of polarisation ’
m the following way The case p' = p corresponds to a vibration
parallel to the ¢-axis (a variable electric moment M 1n this dneection,
ef §5) the case w' = p * 1 denotes a right-handed or left-handed
circularly polarised vibration in the & %-plane (corresponding to an
electric moment in this plane variable m dnection but not 1n magnitude)
Moreover, we must temark that the ¢-axis can be empirically dis-
tinguished from the other directions only if 1t 18 physically distinguished,
for example by a magnetic field Our rule of polarsation would accord-
ingly come 1nto action only in the case of the Zeeman effect, which,
however, for the 1otator consisting of the diatomie molecule, as realised
m band spectra, becomes so small that so far 1t has not been observed
For the rest, our present rule of polarisation 1s 1dentical with that
which applies to the normal Zeeman effect of the electron (I, Chap V,
§6, p 294) Cf also the treatment of the Zeeman effect by Wave-
Mechanies 1in § 10
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and by successive differentiation m + 1 times
(z2 — Dutm +2 4 Am + Dau + 1 + m(m + 1)ul™
= 2mxut +1) + 2m{m + L)u0

If we collect terms and write u(™ = gy, by (25), then (26b) actually
results

To calculate the 1ntegral that occurs in (23), that 1s, the squate of the
normalising factor Ny, we form, by (25a)

NZ— L _ +1G a +“(a:2 - 1lyrds @n
2y 1)2) _ M+ bem R

in which
dgm + &
Gmin = (1 - 2)rmmm(@® - 1),

the highest term 1n G 18 az™ * # with

2m
= (- 1)*2m@m — 1) (m—pu+1)=(-1) (—(—)’L)—, (28)
By successive integration by parts we get from (27)
2 (m + p)! af+?
= (- 1)m+#~§m%;),)}—f_l(x2 ~ 1ymde (@7a)

[The factors 1 + z that occur just suffice to make the terms without
integral signs vanish ]

Now
+1 +1 +1
m =J. (x? - 1ymdx —j ( z? — 1)™ ~g2dz — j (z* — 1)m— 3y
-1 -1
2mI (zz - Dmdz — gm -, = qum — 9m—,
satisfies the following recurience formula
2m
dm = — 2m'+_lQm.—1
On account of g, = 2 1t follows from this formula that
m 2m(2m — 2)(2m — 4) 2 mo _(2mm 1)2

tn = -V nEm-Lem=5 3 2=V Guyo
and hence fiom (27a) and (28) that

2 (m A+ !
2 _
N = amsT(m—p (30)
and, 1n particula1, for p = O we get the well-known formula
2
N = gm+1 (30m)
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The total normalising factor, which 1s equal to the product of N, and
N and 18 to be denoted by N, . 1s given, by egns (30) and (23a), bv

° 4 (m+ p)!
mE G 1 (- )] (3L)

‘We now come to the question of intensity and polarisation in the
case of the rotator The basis 1s again given by the matrx elements
of the co-ordinates, namely of the rectangular co-ordinates (20)
Logieally, we should now write these with four elements

Cmpy mw @D (€ + 10)mys mrp’
But we easily show that the former and the latter differ from zero only if
w =p or pu = puxl,respectively (32)

so that after the respective value of x" has been inserted we may adopt
the abbreviated notation

Lonm (W =p) and (£+ j)mm (W' =px1), (32a)

1n which the two values p' = p £ 1 may be associated with both signs of
The proof of (32) consists in the fact that the matrix elements for
¢ or & + jn contain the following integrals of ¢ respectively

2w 2-
j e * U —Fdg  or j gide £ Uk — #ody,
0 v

They do not vanish only 1if
p—up =0 or p—puy==1

respectively, and then their value 1s 2= This proves the select on
rule (32)

But this has simultaneously furnished us with a ““ rule of polarisation
in the following way The case p' = p corresponds to a wvibraton
parallel to the {-axis (a variable electric moment M 1n this direction,
ef §5) the case p' = u =1 denotes a nght-handed or lefi-handed
circularly polarised vibration in the £, n-plane (corresponding to an
electric moment in this plane variable 1n direction but not 1n magnitude)
Moreover, we must remark that the f-axis can be empirically dis-
tinguished from the other directions only if 1t 1s phvsically distinguished,
for example by a magnetic field Our rule of polarisation would accord-
ingly come 1nto action only in the case of the Zeeman effect, which,
however, for the rotator consisting of the diatorme molecule, as realised
1n band spectra, becomes so small that so far it has not been observed
For the rest, our present rule of polarsation 1s identical with that
which applies to the normal Zeeman effect of the electron (I, Chap V,
§ 6, p 294) Of also the treatment of the Zeeman effect by Wave-
Mechanies 1n § 10



56 Chapter I  Introduction to Wave-Mechanics

‘We come to the selection rule for the m’s and show that 1t runs
m =mzl (33)
To do this we must actually work out the quantities {m, m and (§+79)m m
Replacing the integrals over ¢ by 2w, we obtain by (20) and (21)
N Nowrwlmmt = 2rad, NpuNmy, w16 + 19)mm = 2maK (88a)

J = r cos 6 P, (cos 6) P% (cos 6) sin 6 d6
° (33b)

K= rr sin § Ph, (cos §) PhE! (cos 6) sin 6 df
0

‘We 1nsert the variable # = cos § 1n J and K, and note that by (25a)
the P.’s are equal to (1 — 2?)#/2 multiphed by a polynomal of the
(m — p)th degree 1n x, which we shall call P, _,,* further, we introduce
two polynomials F and G, of degree indicated by the lower index Thus
we set

P,";L(GOS 0) = (1 - wz)"IZP;';l —p.(w)!
sin § Phtlcos 6) = (1 — 2?)H3(1 — ai)u2 £ 12phxl - (z), (34)
Far—wt1= @Ph sy Gmw gy = (1 — 2P £IPLED, 5,

This leads to the expressions
+1 +1
7= j F P, - s, K= j G Ph_,(1 - 2drde (35)

The somewhat artificial definition of G in (84) 1s due to the fact that
in the integral K we had to extract the factor 1 — z* raised to the
power 1ndicated by the upper index of the preceding P

‘We can now use exactly the same line of argument as under A in
eqn (6) Buld up F and G from the polynomials P, instead of from the

successive powers of z, thus
m —u+1

m —p
F= zo P G = Z

+1
d,p* (35a)

v

and assume
m>m'
By substituting (35a) in (35) the condition of orthogonality (24) shows
us that § = K = 0 unless
m =m -1
This proves one part of our selection rule (83) At the same time we
bave, on account of the normalising condition (23),
d

Cm, — -
T = g N, K= N

*Smmlar to the notation used by E Heme, Handbuch der Kugel,
@hap IV, § 46 y s Handbuc ugelfunktionen,
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and hence by (83a)

m_ »

Imym -1 = Ogg——
Nopm s

~
Cn —py, (€ +imy m— 1= a\: A
I &

dm—u  (36)

m— 1 4 t 1
Firom (34) and (35a), howeve, if py, .. denotes the coefficient of the highest
power in P}, _, namely 1in consequence of (25a)

_ (2m)!
P = T (m — ) !

c - Pm—1 B m —
TR pme Emo \ (363)
a
d _ - Pm—1pt, - —(m — p=1)(m—p) 1 J
T D om — 1 9m - 1
If we substitute from (36a) and (31) in (36), calculation gives
- (m + p)m — p) . |
(m I e 1)(m . ' : -
E+Mm m—1= —a @m + 1)2m — 1)) (B =p + 1), (387)

(m + pn — 1)(m + ,
(E+.777)’M, me—1=0a (27”'11)(2”:"‘_ 1)F) (fl =pu - 1)

‘With the converse assumption
m<Lm

we find for the condition that J and K should not vamish by inter
changing m and m’
m=m+ 1

as the second pairt of our selection rule (83) The expressions (37) then
become changed 1n that m, m 4+ 1 now take the place of m — 1, m

To make the construction of the formule (37) intelligible we shall
divide the transitions in question into ‘ parallel,” “ anti-parallel,” and
“ neutral ”’ transitions . ¢ gegensinneg und neutrac), analogous's
to Atombau, p 580 A transition 1s to be called parallel when both
numbers m and pu change 1n the same sense, for example, m —>n — 1
and p —p — 1, they are to be called anti-parallel when their values
move 1n opposite directions, for example, m —>m — 1 and p—>p + 1,
a neutral transition occurs when u remains unalteried The transitions
m—>m — 1 in (37) are then respectively neutral, anti-parallel and
parallel Just as in I, Chap VI, p 367, the parallel tiansitions are
“stiong,” the anti-parallel *weak,” and the neutral *“medium” (less
strong) In our formulse (87) this 1s expressed in the fact that m
the strong tiansition (third row) +"w, + p, 1n the weak transition
(second row) - p, — p and in the medium ftransition (first row),
+ p, — p oceur under the root sign
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Since the individual u-components, on account of their insufficient
resolution, do not interest us, we shall sum up over all the u’s, taking
the sum for the wniensitres and not for the amphitudes, with due regard
to the fact that the proper states distinguished by the values of u must
be considered as wncoherent among themselves Thus we sum up the
squares of £ and of the absolute values (Normen) of ¢ + jm In performing
this summation 1t 15 convenient to let u go from — m to + m,* and then,
strictly speaking, | s | should be wiitten for w 1n the upper index of the
spherical harmonics and 1n the formulee (37)

By the formula

+m
S ut = o+ DEm + 1) (38)
-
we get from (37) that
= 2 2 2
m? — w @
Qe=¢ @m+ Lem-1 ~ 3™ (382)
—_m
and, taking together the two formulee (87) for £ + jy
+m
m(m — 1) + p? 4a?
=32 @mr DEm-1) " 3™ (38b)
Dlé+ ]
The sum * of (38a) and (38b) gives
liom (39)

J 1s the total intensity which 1s observed for the transition m —m — 1,
that 1s, of a definite line 1n the spectrum of our rotator In the same
way we should obtain for the transition m + 1 — m, which gives rise to
another line of the spectrum

liem+1 (39%)

The sum of (39) and (39a) gives 2m + 1 2m + 1 18 the “weight” of
the state m (dtombau, Chap VIII, § 5, p 651), that 1s, the number of
different states (w = — m to p = + m) that belong to the same m, or
we may also expiess the same thing by saying the number of spherical
harmonics (c¢f § 2, p 13) that have the same lower index m The

* Calculating with negative u’s means nothing more than that e —t*$ 1s to be
considered equally with ¢ + ¢ Later on, the sumplhfication effected by counting up
the negafive p's as well will again be found useful

+The reason for counting only one half of (88b) and not the full amount, as might
suggest 1tself by (87) on account of the two possmbilities of tranmbion u + 1 —> x and
# — 1 —> p, 1s that of the two circular vibrations m the gy plane, i each case only half
the 1ntensity 15 observed if, for example, the lime of vision Les in the § 5 plane
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appearance of the weight 2m + 1 in the sum of the intensities of all
transitions 1s 1n agreement with the summation rules of Burger and
Dorgelo (4tombaw, Chap VIII, §5) Our formule (89) and (39a) have
been derived by Fowler * for the somewhat more general case of the
rotation-vibration spectrum by means of the correspondence principle,
and have been extended by Honl and London t to the band-spectra with
zero branches, wheieas om: treatment 1s 1estricted to the case of the pure
1otation spectrum  We wish to point out agam, however, that our treat-
ment on the basis of wave-mechanies renders superfluous the introdaction
of the classical theory, by way of the coriespondence principle, even m
questions relating to intensity

The oscillating rotator would naturally follow on the rotator at this
point We investigated 1ts proper values in § 3, D  Iis spectrum forms
the type of the rotation wibration spectra just mentioned But the
investigation of its intensity conditions would diverge only little from
those appertaining to the rigid oseillator, so that we mav omit the
discussion here and refer to the detailed investigation of Fues I

§ 7 The Kepler Problem

‘We now come to the central problem of wave-mechan'es—the problem
of the hydrogen atom This formed the test of the method of wave-
mechanics 1n the first paper on the subjeet by Schrodinger, published 1n
1926 In comparng 1t with the working out of the hvdroger atom by
quantum-mechameal methods, carried out by Pauh§ a* the same time,
the superiornty of wave-mechanics as 1egards mathematical simplicity and
clearness becomes manifest We hope in the sequel to enhance the
lucrdity of treatment still furthe:

A Proper Values and Proper Functions Discrete ana Cont.nuous
Spectrum
The potential energy between an election and a nucleas carrving a
charge Ze 1s, if normalised 1n the usual way (V = O forr = =),
Ze®

V= -2
;

The wave equation (11) of § 1 becomes, 1f E 1s similarly noimalised,
A¢+§%Z(E-LE;B—->¢=O @)

‘We treat the equation in spatwal polar co-ordinates 7, 6, ¢ and assume a
solution 1n the form
y = RP}" (cos G)erms (2)

*R Fowler, Phil Mag, 49, 1272 (1925)

+H Honl and F London, Zeitschr £ Phys , 33, 803 (1925)
IE Fues Ann d Phys, 81, 281 (1926)

§W Pauh, Jr, Zeitschr f Phys , 36, 386 (1925)
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R 1s a function of r alone  As the lower index of the spherical haimonie
P we have chosen J, fo1 1easons connected with the mapping out of
spectra (instead of the n 1n § 2 and the m in § 6) [ must be an 1nteger
= 0 and m must likewise be an integer, 1n order that (2) may represent
a prope: function (cf §2) If we use the differential equation of spherical
harmonies 1n the foim (1 5), § 2 with the pioper value A of eqn (11), § 2,
and derive the expiession A¢ from eqn (1) § 2, then we get for R the

differential equation

dR | 2dR B, C
2 (A+2 + )R =0 3)
where, for brevity, we have written
S8—"m 4=m
A = TE’ B = h‘! Ze2’ C = - l(l + 1) (3&)

We distinguish between the two cases
E<Q0and E>0

(@) E <0, Corresponding to the Elhptic Orbats of the Earlwer Theory
To take account simultaneously of the sign and dimensions of A
we set
A 1
= T (4)

and determine the asvmptotic behaviom of R by omitting all texms 1n
1 1
; and L (3) We obtain
R R
drt — 7y

Of these two asymptotic solutions we can use only that which vanishes at
mfimts  We mhioduce the dimensionless quantity

R|= eifh'o

P=9-;T;=2~/_—_1 7, 0Sp=<ow (42)
that 1s, we write our asymptotic solution as
R =i
Corresponding to this, we make the general assumption
R=¢—t2 y )

g;lﬁlplymg eqn (3) by 72,/4 and expressing 1t 1n terms of p (dashes denote
erentiations with respect to p)

;L 2, 1 B 1 1
R +2R4 (-1 L _ “*1)) -
P ( 7+ J=i, > R=0 (6)
‘5) we calculate

Rr _ 5_;15(91 - é”), Rn — e_p,,(vu - 'D’ + i,v)
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Substituting 1n (6), we get the differential equation for v

e (R 0 e @

The only singular pomnt of this equation situated in finite regions 1s the
himiting pont p = 0 by criterion () of § 2 1t 18 a pole We theirefore
make the assumption

V= prw, w = z ap” (7a)
v=01,2
To find the characteristic exponent y, we substitute (7a) mn (7) and look
for the factor of ey =2 Tt 1s

Wy - D+ 2y -l + D=y +1) - I+ 1) (7o)
Equated to zero, 1t gives the two values y = land y = ~ I — 1, of which,
however, we can use only the first 1f our solution 1s to be a proper function
of the problem So we replace (7a) by
v = plw = 2 o,p” T (7¢)
012
On substitution 1n (7) the factors of all powers of p must vanish This

gwes a recurrence formula for the coefficients a,, namely, one consisting
of two members For we get from the factor of p» +1—1

O+ T+ D0+ D) + 20+ 1+ 1) = 10+ D )

= v+l+1—=}a., ®
{ J-A4 J
We now wish to airange that w0 becomes a polynomial, that 1s that the
series (7c) ceases, say, at

=1y ®

in which the notation %, may suggest ““radial quantum number” We
accomplish this by making the factor of @, in (8) zeto for v = =, by
setting

—B——-—-n +l+1l=mn (9a)

VEr A
whereupon obviously all the later coefficients a, vamsh for v>n, The
symbol % 18 to hint at the  principal quantum number” From (9a) we
-now get, b ,

get, by squaring -
—-— = pl

But in view of the meaning of A and B 1 (8a) this 18 the Balmer term
and mecludes the correct definition of the Rydberg constant 2m>met/h3
Qmr2met 72
ot (10)
Thus the discrete spectrum of the hydrogen problem has been found

E=-
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We have next to make some observations about the significance
of our definition of Z The old principal quantum number 7 was com-
posed, according to eqn (9a), of two positive integers 7, and I, both of
which could assume all values between zer0 and mmhnity, n,, as alieady
mentioned, corresponds to the radial quantum, I 15 our piesent
“azimuthal quantum,” such that 7 + 1 equals our earlier number %
Thus for k¥ wave-mechanics gives all the positive integers except <ervo It
we nterpret & 1n the sense of the old ideas of oibits, this means that the
“ pendulum orbits ”* (Pendelbahnen) k = 0, 1n executing which the election
would come infinitely near the nucleus, are excluded in the new theory
quite automatically as being incompatible with the ‘“boundary condi
tions ” For the old quantum theory the reason for the exclusion of L = 0
offered an essentially insoluble problem,* for the enclusion of pendulum
orbits mn the case of the relativistic Xepler problem and of the Stark eftect
led to difficulties in the case of the Zeeman effect, according to the adiabatic
prineiple (ef Aiombau, Chap V, p 405), wheie the corresponding orbits
cannot be logically excluded Particular disagreement was found to
occur 1n the case of crossed electric and magnetic fields Wave mechanies
overcomes these difficulties 1n the simplest fashion by not yielding those
states which would coriespond to the pendulum oibits They do not
come 1nto consideration at all and so cannot conflict with the adiabatic
principle 'We may also point out that an appropiiate representation of
the facts offered by the anomalous Zeeman effect compelled us even 1n
Atombaw, Chap VIII, to adopt measures which correspond exactly to the
introduction of I = k¥ — 1 which has 1its logical toundation 1n wave-
mechanies t

Further, we see that in the sense ot the definition on p 18, the Keple:
problem 1s degenerate, for to the proper function with the quantum
number % there correspond all proper functions

Y = Ry, (pn)P*(cos G)ermé,

where for the present we denote the degree of R by the lower index 1,
Now the quantum numbers #, I, m, are bound together by the following
relationships T

l=n-1, |m|Z],

as may be seen directly fiom the definition of P}* and from eqn (9a), by

*8ee 1n particular the remarks by W Pauli in Vol XXIIT of the Iandbuch der
Physik (Geiger Scheel), especially pp 159 et seq and 164

+Forin dfombau, p 587, eqn (5), we defined 74 = k — 1, and saw in eqn (18),
p 622, that the Landé g formula, 1f the symmetry of its structure 18 not to be
destroyed, demands the use of the 74 1n place of % @ shall of course in future drop
the rather unfortunately chosen symbol 74 and write I mstead

T Concerning the possibility of m Laving the negative sign see footnote, p 58 In

thg ?qiellwe shall as a rule calculate on the assumption that m takes all values from
~— L to
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(92) 7,18 determined by I, if 7 1s known 8o for one and the same # we
have the following number of proper functions

n—1 41 n—-1
E > m= E @ + 1) = n? (108)
l=0 m=—1 =0

that 1s, every proper value 18 (n? — 1)-fold degenerate

‘We wish to study the proper functions belonging to the proper values
(10) more closely By (5) and (7c) their radial component 1s

R=pl w e—*P
Where w 1s a polynomial of degree n, Although this polynomial 1s com-
pletely determined by the recurrence formula (8) (except for a multiplymng
constant), we shall set up the differential equation for w For this
purpose we calculate trom (7c¢)
v = p‘<w' + éw), v = p’(fw” + 2’ + i — 1)w>,
P P 3

and by substituting 1n (7) and reducing simply with the help of (9a) we
get

pw' + 20+ 1) —plw +(m-1-1w=20 (11)
We have already encountered this equation mn § 3, eqn (21b) As

worked out there, 1t arises through successive differentiation fiom the
differential equation of the “ kth Laguerre polynomial ”

zy' + (1 -2)y +ky=20 12)
For if we denote the «th differential quotient of v by w, then
zw' + G+ Ll —-2)w + F ~-2)w =20 (12a)

holds Comparison with (11) shows that in our case
1=2l+1 k=n+l z=p
Denoting the Laguerre polynomial as usual by I, its degree by the
lower index and the number of successive differentiations by the upper

index, we write
w = IO, R=pf LEAED o—omN, s
N, stands for a normalising factor that we shall presently calculate
Accordingly, the degree of w 1s
n+l-2+D=n-1-1=mn
1n agreement with (9) and (9a)

Next we shall derive a method of representing the Laguerre poly-
nomials which 1s convenient for our purpose We assert that if we
again denote the degree by %

&
Ly(z) = ewm(mke —2) (14)

To prove this we set u = zbe— =
By differentiating once with respect to = we get

ou' = (k - z)u,
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and from this by differentiating (k¥ + 1) times and applying the produect

rule
zut+2) 4 (A 4+ D+ = (A - gju®+) — (F + ju®  (14a)

If we now set Ly = y and, hinking up with (14), 4® = ye —* and work
out

ak+) = (y' - yle =2 wEFD = (§" - 2 + gy~
we get by subsutution n (14a)

ey’ -2+ )+ F+ D - y) =F -2 -y - F+ 1y
and this 1s 1n fact 1dentical with (12)
By (13) the corresponding formula for our polynomial w 1s

qe +1 dn +1 +2,—p
W= gAFi fg—pn—r-z(/o” e )> (18)

‘We now wiite down the condition of orthogonality for any two proper
functions Y and Ypye according to eqn (15a), § 5

. except when n = 2, = I' and m = m/
j'l‘nlmsbn ruwdr =0 { simultaneously

Sinece by § 6, B this condition 1s already fulfilled by the ¢- and ¢
components of the s, unless m = m' and I = I’ simultaneously, in order
to find the additional condition for the 7 component we must set m' = m
and I’ =1 We get (by defimition, R 1s real) as the radial condition of
orthogonality

ijﬂmRn’lmTEdr =0, = +n (16)

Finallv, for ' = n, I’ = 7 and m' = m we get fiom eqn (15b) of § 5 a
normalising conditwon jor the functions R Taking into account the method
of representing R mm (13) and the changed notation for the quantum
number, we get for it

r 38
(2~°) J=NZ (17)
J = L pA+ Ve = P[LELH D(p)2dp (172)

3
{17) determines the normalsing factor N,., the factor <%’) , which arises

through the transition (4a) from 7 to p 1s due to the circumstance that our
normahsing condition refers to the variable » while we have obviously to
effect our mtegration i the varable p

To calculate J we express onme of the two factors L as a differential
quotient and combine ke other with the power of p 1nto a whole function G

dgt+1
J*j:Gn+l+x e="® _d;eTLﬁudp

Coprpr = pRFOLEHD < gpnt i+ 4 ppn+l 4 (17b)



§ 7 The Kepler Problem 65

Integrating (2! + 1)-times by parts and again writing down only the
highest powers of p we obtain (the factors ¢ —* and p***+?) make the terms

not under the integral sign vanish)
0
= [ i+ bp - a4 Y+ L D o= Ly dp,
that 1s, 1f we use the form (14) for L, .,

° +I+
J =j ap™ 1
0{ f an+1i
F - @+ D+l R (et e 0)dp

Integiating by parts (n + I)-times more we get
(-t T =an+1+1) VJ- prtiltie—Pdp
° (17¢)
+{b - a2 + (n + 1+ D}(n + l)'j o+l = Pdp

while all the later texms of the expansion vanishin the integiration by parts
(17¢) 1s equivalent to

(=] =a[(n+1+ 1)+ {d —a@+ L)(n+ 1+ D}[(n+ ' (174d)
By (17b) and (14) the values of a and b are

n+ 0)! _ + !
a=(- 1)"“@‘(_—T-)T)v b= (- 1p+i=ifn + 1)(&’——)?)'
Substituting 1in (17d) we get
nf(n + ) T
T=m=-1-1) (18)
This determines our norm&hsmg factor N, For by (17)
S(n -1 - 1!
N’ <9'0) on[(n + )T (18a)
() B> 0, Corresponding to the Hyperbolwe Orbuts of the Harler Theory
We now set
A=+ —1-., 19
762

and get asymptotically by (8)
dR R
arr trz

It 18 not possible to make a choice between these two solutions, as
neither becomes infinite for 7 = «w (indeed, they both vanish, as a more
accurate estimate will show) This already shows the greater manifold
of solutions compared with the case (a) and expresses itself in the form of

& conbinuous solution  Analogously fo (@) we now set
voL IL—b

=0, R=gwn
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P

p = 2rfry = 2./Ar, R=eizv,

% » (20)
R'=si2<'v'iév), R"=eiz(v"iw'- 1v)
and find for v the differential equation
" 2 , B 1 1(t+1)
- i —— i'. - - = 0
vt (p )+ [( JA ”)p pr @)

which 1s analogous to (7) The assumption (7a) gives, as befoie, y = [ as
the only possible characteristic exponent at the zero point But the
“ polynormial method” now fails on account of the imaginary coefficients
in the differenfial equation Nor would 1t lead to the desired end, since
a polynomial, when multiplied by e £ **/2, would become 1finite for p = o
If we actually insert the assumption (7¢) 1n (21) and equate the coefficients
of p”+¥—1 to zero, we get the recurrence formula

G+ 1+ +)+2v+1+1) - {‘(l+ la, 41
=1z - = (22)

Fovr+1+4+1) JAa»
If we wished to force the series to end, we would obtain an
wmagnary value for -—:—'%, which would contradict our present assumption

about A and E, respectively = Consequently A and hence also B remains
wndeterminate We now have a continuous spectrum of proper values
E > 0, which follows continuously on the limit of E = 0 of the discrete
spectrum

It 18 a particularly beautiful feature of Schiodinger’s theory—and
surprising fiom the mathematical point of view—that 1t connects the
continuous speetrum by an uniform analytical process with the line
spectrum of hydrogen The older theory (ef Afombau, Chap IX, §7)
required special though quite plausible physical assumptions to achieve
this

By (20) the radial component R of the proper function now becomes

Q o
R = g2 z Qup® + 1 4 g — PN Z atpr+i (28)
0 )

The a,’s are here to be calculated from (22), the fact that the coefficients
in the second term of the summation are conjugate 1s directly clear by
(22), if we choose a, to be real and equal 1n both terms The appearance
of the infinite series m (23) mtroduces no difficulty, and cannot affect the
postulate that the proper funetion must remamn finite for p = @  For
we saw above that the two asymptotic particular solutions of R remamn
finite for 7 = w0, but the particular solution 1mplied 1n (28) which 18 finite
at the zero pomt 1s linearly composed of these two, The present case 1s
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different from that treated under (a), m which one of the two asymptotic
particular solutions went to wo like ¢ +°/2
It 18 easy to estimate the asymptotic behaviour of R to a second
approximation  For if we set
R = ge = 2 (23a)

and treat a, according to method given 1n eqns (13c¢) of § 2, as a slowly
variable quantity, we get from (3) the asymptotic differential equation
d 1z
f + = LS a =0
P P

with the abbreviation
B =Bry= -E__

JA
and obtain from 1t by integration
loga =— (1  B) log p + const

17
a = COI;S p + 8 logp (23b)

So we see infinity 1s, indeed, an essential singularity tor the proper
function R, but if we move towards this pomnt along the real axis, R
certainly does not become infinite , 1ather 1t approaches the value zero
with decreasing oscilations, as already remarked above

Reverting to the original variable r we wiite the two asymptotic
solutions contained in (23a and b) in the form

C
R = ;e + 1(kr + =) (24)

which 18 usual for a spherical wave (moving outwards or inwards) In 1t
we have setb L
k=;;, o= Blogr (24a)

C 15 a complex constant, & a slowly variable real quantity
We shall require this method of representation later in a more

11gorous form to explain the photo-electric effect

‘We have here limited ourselves to prove the existence of the continuous
spectrum and of 1ts proper functions  This proof, 1n spite of i1ts elementary
character, seems to us convincing We have not needed the more ad-
vanced analytical devices whicn Schrodinger calls into action for the con-
tinuous and the line spectrum, namely complex integrals and Laplace’s
differential equation But we shall explain these methods mn Note I af

the end of the book

B Two- and One- Dimensional Kepler Problem

If we treat eqn (1) 1n plane co-ordinates 7, ¢, that 1s, set
N L . 1%
M=t rw TR
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for example, the angular co-ordinate ¢ (corresponding to the circular
orbit of the older theory * Hqn (1) then assumes the form
1 2% | Bxim eZN
ot BTy =0
Its solution, petiodic 1n ¢, 18
(// = e’l’ntﬁ

1f we take 7 as wntegral and make 1t subject to the condition
n? | 8xm e2Z
-7;+}T(E+-;-=o @7)

We are troubled with the indefinite denominator » We can eliminate
1t by making use of the rule of the older quantum theory that the mean
value of the potential energy 1s equal to twice the total energy ~We shall
elucidate 1n Chap II, § 9, what this rule signifies in wave-mechanics and
on what 1t 15 based  In our case, for which 7 1s constant, 1t states simply
that

e2Z 2 Z
— = 2K, 1 =-3F

If we substitute this in (27), we get
4B2n?  8x?mE

272 + e T 0,
20 04 7,2
that 1s, E=- &r-?%zz— (28)

This 18 again the Balmer term, and 1n this case n1s integral We thus
find the same remarkable change from integial to half-integral and back
again to integral quantum numbers in passing from one dimension to two
and three dimensions, as we found earlier 1n § 3, C, for the oscillator, and
likewise for the rotator

C Numerical and Graphical Representations of Proper Functwons Meanng
of the Quantum Numbers wn Wave-Mechanwcs Comparison wiih the
Earler Ideas mvolving Orbits  Sphercal and Axzval Symmetry of the
Charge Cloud

We next give a tabular summazy of the proper functions of the Kepler
problem 1n the case of discrete states  As a preliminairy step we represent
mn Fig 5 the series of Laguerre polynomials, the expressions given in the
figure follow directly from (14) The general formula 18

Lin(z) = (- 1)”(w“ - ;ﬁlwn—l + "B(”T_,%“"+ (= Drn !) (29)

* We might also mtroduce elliptic co ordinates and, as an analogy to the periodic
elliptic orbit, work out a solution of the wave equation which depends periodically on
one of the two elliptic co ordinates
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To explain Table 1 on p 71, we further remark that mm the ex-
pression P77 of the spherical har-

Lot L5 monic [ = 0 makes m = 0, since
. Lo we always have
d g 2 lml =l
o 3 4 I I3 X F
'/ 'I | and that 1t follows fiom #n =1
B —0 and my =0 b
L, that 7 = 0 and 7, = 0, since, by
(9a), the relation
Fic 5 —The Laguerre polynomals l+n=mn-1
L,=1 holds
Ly=-z+1 We then calculate the length
L =2 —4r+2 7o defined by (4) By taking (3a)

L, =-2%+93* — 18z + 6

and (10) into consideration we get
In the figure I, and I, have been

2 2
multiplied by the factors § and —— 2o N hn?
6(1 +./3) a 8xim 2wimetZ<
which have been chosen thus in order that
the principal maxima (or munima) of L h? n an
and L become equal to + 1 T = Irtme: 7 T (30)

Here a 1s the 1adius of the fiist Bohr circle 1n the older theory of the
hydrogen atom (¢t I, Chap IV,§3, eqn 7),and so a/Z 1s the correspond-
ing radius for a nucleus with chaige Ze So ou:r reflections based on
the theory of functions, 1n particular our method of asymptotic approx-
mation, which led to the definition of the quantity r,, point directly to
this orbhital radius a

If we measure 7 1n units of the radius a/Z, that 1s, set
s = Zg (30a)
our definition (4a) for the varable p becomes

r 2
2= nt (30b)

27
n 7

p =

Concerning the values of P we refer to Fig 2, § 2, and concernming the

expressions for R to eqns (18) and (18a) For example, for » = 1 and
I = 0 we have

- d 1 VA
= —Pla__ = — - —_— = p—
BN, =e—" dpL1 e— P N, = + 2(a>

On aecount of the choice of sign 1n the case of N, we can always arrange
that i, for example, becomes positive for » = 0 The value of Y 1n
the last column but one of the table then follows from eqn (2) The
last column contains the usual spectroscopic notation of terms and the
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R Chapter I Introduction to Wave-Mechanics

allocation to the shells of the fully occupied atom (cf Afombau, Chap
IV, p 280, Table XVIII), which we express in Bohr’s notation The
fact that according to this last column in many instances fwo different
shells correspond to one hydrogen state 1s due to our not having hitherto
taken 1nto account the differentiation of state due to the “spinning

electron
In Fig 6 we represent graphically the radial part of the proper
funection 3¢ The following re

09 lation of great generality 1s
o8 shown here the nwumber of
07 3

06 Ordnates F -5 (3) /ZRM_(,%;)/%‘ zero pownts between the limiting

pornts s =0 and s = o s

zi Abscisse $=23 exactly equal to the radial
03—\ x—0 quantum number n, The
02 | L curves K, Ly + Ly; and
a1 T T~ My +M; m Fig 6 have no
e 5 2 75 zero pomt, by our Table they
06 correspond to the case 7, = 0
asf 5 In the case of I; and also in
04 that of My, + M, there 1s one
Zj‘ Py zero pomnt, for then, by our
01 < f | I Table, %, = 1, and the zero
o\ A L pomts 1n question lie at s = 2
S~—2— 0 ®  and s=6 respectively At
06— M,;, two zero powmnts occur,
zj M corresponding to 7, = 2, ac-
03, ! cording to the Table they are
02 A given by 2s? — 18s + 27 =0
01— 2 | gt ! ] and so lie at s = (8 = ~/3)
o é@u___—} This leads to a simple wave-
Fie 6 mechanical nterpretation of

The curves represent the normahsed radial part 1€ quantum numbers, indeed,

2y 1 not only in the case of the
f ¢ an(-) —, multiphed by the factor
° nia n') Ny P 7 radial co ordmmate and of the
—_—{ = 13

2( Z) /#  The factor # makes the ordinates Kepler problem but 1n all cases

of the eurves L h:ave m:aeufhe value that they Wwhere, using the polynomial
are entitled to have acco: g to normalsafion,
and males the curves M correspondingly appear method, we can apply the
three fimes higher following definition by foreibly

breaking off an expansion n
series, that 18, by the degree of the resulting polynomial gquantum
numbers denote the numbers of nodes 1 the proper function that le between
the limating points for the co-ordinate i question This brings to mind the
analogy of a wibrating string in which the ordinal number of an overtone 1s
hkewise measured by the number of nodes that he between the fixed ends
of the string,
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According to O Perron the proof may be carried out as follows Let

P,, Py, P, be a system of orthogonal polynomials belongmg to the
interval (@, b) and of degree O, 1, 1, such that for every m <n we
have .

j P(@)Pa(e)p(e)dz = 0 (31)

Heie p denotes an arbitrary * weight-function ” which does not vanish for
a < x < b, and may be taken e g as positive, the P’s can, indeed, be re-
garded as defined by (31), in which case the numerical factor would have to
be fixed by a corresponding normalising condition Lt us now assume that
P, has only v < n roots z;, z,, x, between a and b, and let us form

gv(@) = (# — 2)(@ — =) G

Then g,(z)Pn(z) 18 a function of uniform sign n the interval a to b, and
the inequality

[ @Pa@piaaz + 0 (812)

certainly holds On the other hand ¢, may be compounded linearly from
the polynomials Py, P, P,
gu(@) = z cuPu

0

Hence by (31) the integral in (31a) would have to become equal to zero
Consequently v < 7 1s 1mpossible

v = n leads to no contradiction, as then one member of the sum
contains the normalising condition in place of the condition for orthogon-
ality Since » > n 18 excluded by the fundamental theorem of algebra, 16
necessarily tollows that every polynomal P, of an orthogonal system has
exactly n zero pownts between a and b If 1n accordance with our above
rematrks we 1dentify the degree n of the polynomial with the quantum
number, this number becomes equal to the number of zero pomts of the
polynomial or, as we said before, equal to the number of ¢ nodes

Reverting to the Kepler problem we add that the weight-funection p
just used has the significance

B(p) = ¢+ =

1n the case of our derived Laguerre polynomial, eqn (13), as can be seen
fiom the differential eqn (11) Our theorem also holds, of course, for the
azimuthal quantum number I, which 1 the case of m = 0 specifies the
degree of the Liegendre polynomial P  The fact that this polynomial has
exactly ¢ zero pomnts between cos § = — 1 and + 1 has long been known
and manifests itself n Fig 1 of p 12 P, = cos 6 vanishes once,
P; = % cos? § — 4 vanishes turce In the case m + O the degree of the
polynomial belonging to P}* (we called 1t P]"_ ,» 1n § 6) becomes equal to
I — m Hence the function P! = sin # that occurs in our table has no
zero point within the interval under consideration
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From the proper functions i we pass on to the assoclated charge
densities eyy,* which we originally defined 1n eqn (16) of § 5 We first
deal with the general symmetry of this distribution of charge ‘We then
see that 1n the case of the S-terms, that 1s, for I = 0, the distribution 1s
spherically symmetrical, that 1s, ndependent of 8 and ¢, 1n the case of
the P, D terms, that 1s, for > 0, no matter whether m = 0 or >0,
the distribution becomes axially symmetrical about the polar axis § = 0,
which however 1s only mathematically distinguished Concerning the
last remark we must add that 1t rests on the particular form etmé
which expresses the dependence on ¢, and 1 which yy* becomes 1n-
dependent of ¢ In the case of the more general assumption *

aetmd 4 bg M,
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01 N\K t ‘
K/n I

¥
O35 4 5 6 7 & 8§ W0 # 12 13 4 B
02 e £
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] 2/l ]
i | .//‘/ [~
01
o!Oé/i/ | \I\'\Q\\#;
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Fic 7 —Graphical representation of the distribution of charge in the various
proper states The function s?F-1s plotted as the ordinate, F having the same value
asin Fig 6 The L curves accordingly have their ordinates multiphed four times, the
M-curves theirs nine times (cf the remarks attached to Fig 6)

the axial symmetry 1s obviously replaced by an axial periodicity  Further
we must note that the position of the polar axis (when no magnetic field
1s acung) 1s physically indefinite, so that the symmetry or periodicity in
question can occur about any axis mn space This clearly corresponds
to the spatially indefinife orientation of the orbital planes in the earlier
theory

In Fig 7,f however, we shall not plot the charge-density 1itself, but n
* On 2ccount of the normalisation the constants @ and b here introduced are bound
by the conditzon
laj2+]o|2=1

+These curves, hike thosein Fig 6, are in the main taken from a paper by I Paulin,
Proc Roy Soc, 114, 181 (1927) paper by g
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each case the charge integrated over the spherical surface of radius s
[eqn (30a)], namely

i)' = Sgﬁ (32)

The resulting curves are instiuctive i several respects Firstly, they
Mlustrate how far the ¢ charge-cloud’ (Ladungswolke) mmto which the
electronic charge ¢ becomes merged according to Schrodinger (¢f also § 8),
extends itself The fact that p vanishes for s = 0 whereas i 1tself had a
maximum there in several of the curves of Fig 6, 1s, of course, due to the
factor s? mn (832) Starting from s = 0, p either increases directly to a
maximum or first passes through some smaller maxima to a principal
mazsmum, after which 1t decreases exponentially as far as mnfinite values
of the abscissa

We compare this distribution of charge with the shells of the corie-
sponding ng-orbits of the older theory According to the new view these
shells are by no means thin, sharply defined shells, but very much
widened regions of continuous space charge, which may even be sub-
divided regions But for each of these distributions of charge we may
define a sphere of mean radius s, such that 16 divides the total charge
mto two equal parts The corresponding ordinate of the charge-distribu-
tion 18 exhibited 1n the figure and in each case lies near the principal
maximum If we call this s, for brevity the radius of the shell, we see
that the radius of the K-shell 1s the smallest, the two radn of the L-shell
are greater, and those of the M-shell are greatest, quite 1n accord with
the earlier 1deas

There 1s a still further correspondence between the earlier 1deas and our
present view To 1llustrate this the dimensions of the hydrogen orbits
according to the older theory are shown in the figure, namely for the
K and L; shells (circular orbits) they aie marked off along the
z-ax1s as dark lines and extend from s = 0 to the value of s that corre-
sponds to the circular radius 1n question We see that the dvmensions of
the paths of the earhier theory cowmcrde wn the mawn wath those of the present
charge-dastr abution

D Motwomn of the Nucleus

Hitherto we have treated the Kepler problem as a one-body problem
‘We now pass on to the two-body problem We may deal with 15 very
quickly by referring to § 8, E We start out, as in § 3, E, from the
partial differential equation (23) in the phase space of six dimensions,
namely 1n the space of the co-ordinates z,y,2, of the electron and z,y,z,
of the nucleus, and build up from them the co-ordinates é7Z of the centre
of inertia and the relative co ordinates 2yz The wave-function ¥ of the
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whole problem sphits up 1nto the wave function ¢ of the ‘ relative motion ”
and x of the “ motion of the centre of inertia ™

V(5121 72Y270) = P(2y2)x(énd), } @)
T = Ty — Ty (m + M)¢ = mz, + Mux,,

1 which we have called the masses of the electron and the nucleus, as
usual, m and M  The differential equations (27) and (26) of § 3 hold for
¥ and x, the significance of the potential energy V being correspondingly
altered We write the equation (24) defining the * resultant mass” pm
our present nomenclature thus

1 1 1 . mM m
peam T PEMam T Irm/M

Eqgn (26) of § 3 now, too, possesses the continuous spectrum theie
deseribed (cf also the end of § 1), cortesponding to the indefimteness of
the motion of the centre of inertia, or the arbitrariness in the choice of
the system of reference  On the other hand, eqn (27) of § 3 1s 1dentical
with ow: eqn (1) of the present section, except that m 1s replaced by pu
and B by E — E; (E; = energy of the motion of translation) Conse-
quently, evervthing that we have derived about proper values and proper
functions ean be taken over from the one-body problem and applied to
the two body problem In particular, the spectral equation (10) remains
1n foree, excep? that m s replaced by p The Rydberg constant R accord
ingly now has the value

R = 2r%pe*  Amimet
TR Bl+m/M)

(34)

It 1s unnecessary here io do moe than pont out the beautiful way n
which this formula has been confirmed spectroscopically (by the small
distances separating the Balmer and the Pickering lines, I, Chap, IV,
p 222) The new theory accounts just as well for this and by means of
the same formuiz as the old theory But what are we to say about the
assertion on p 223 (of the same chapter) that “ the differences between
the lines (namely of the Balme: and Pickering series) give us definite
mformation to the effect that in our intra-atom:e planetary system the law
concerning the persistence of the common centre of gravity remains in
force™? Can we stll mamntam this assertion?® For we have now no
planetary system, no concentrated masses or charges, still less in the
case of the nucleus than 1n that of the electron (cf below) Yet there
can be no doubt that our result rests on the law of the persistence of the
centre of inertia of mechan e¢s It retains 1ts place also n micro-mechanics,
even if 1t does not here refer to pont-masses but to mean values (ef
Chap I1,§9) It 1s not the certainty of mathematical statements but
only the vividness of the mental pictures (4nschaulichkeit der Vorstellung)
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that becomes weakened 1n miero mechanies as compared with macro-

mechanics

We shall now answel the question as to what ¢ charge-cloud ” 1s to be
ascribed to the nucleus in the two-bodies pioblem, the charge-cloud of
the electron relative to the nucleus will 1emain essentially the same as 1n
the one-body problem  ‘We shall seize this oppoitunity to explain the rule *
given by Schiodinger fo1 defining 1n the case of several point charges the
charge distribution to be aseribed to each individually This rule,
specialised for our two-bodies problem, runs keep the co ordinates @,y,2,
of the nucleus fixed and integrate the absolute value of the proper function
¥ over all possible co ordinates x,y,2, of the electron Multiplying the
1esult by e, we get the density p, of the charge cloud of the nucleus at the
pont 2,952, By eqn (33) this gives 1n our case

Py = ejjjdmldyldzllwl2

= o [ [amavidalucovixennr ©5)

Instead of =z, we may now wntroduce x = %, — x, as the variable of
tegration, where, by (33),

m
¢=o+ T

So 1f we neglect the ratio ;n-/—l, & and hence also x becomes independent
of the variables of integration 2,5,2 In place of (35) we may therefore write

ps = elxts, n OF | | [dnayasip

But the integral that remains 1n this 1s equal to unity by the normahsing
condition, and we therefore get

P = elX(és n, Z)lz

Now, we had x = e except for a constant (cf E, § 8), thus | x| = const
Accordingly also p, = const

The charge-cloud of the nucleus 1s uniformly distributed over the whole
of space to an infinvte distance, and of course with the density zero, since
we must postulate

jPzdfz =é

In essence this asserts nothing more than that in the absence of
external fields every pomnt of space 1s equally probable as the centre of
mertia of an atom  If the atom 1s enclosed in a cavity (Hohlraum), the
remarks at the conclusion of B, § 3, must be observed the density of the
charge-cloud of the nucleus becomes finite but 1s nevertheless still
appreciably constant in the whole of the cavity

E The Selectron Rules for the Kepler Problem
The quantities gp, m [ matrix elements,” eqn (21), § 5], which lead to
the selection rules, must now be written with six indices Combining

* Schrodinger, Collected Papers on Wave Mechanacs, Quantisalion as a Problem o
Proper Values, Part IV, §§ 2 and 7 (Blackie & Son, Litd ) f
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We shall now endeavour to apply the simple argument of § 6, A, by com-
paring the ntegral S with the condition of orthogonality of the radial
proper functions By (16), the same variable of integration s being used,

this condition 1s
[Ty (Ze)es (G )pwds = o (38)
mn which the ¢ weight-function ”” p(s) has the significance

1 1
p(s) = gl+2~ "’+1T)3 (380)

For this purpose we combine the first two factors under the integral sign
1n S, after splitting off the factor s? *+ 2, to a polynomial G (of degree n’— 1)
and write 8 as follows

® 21412
S = jo GO (55 )p(s)ds (384)
Of course we can now also develop G 1n terms of the polynomials L
n -1
G = z(v) oLy (39)

0

But the condition of orthogonality fails us, as it no longer enables us to
carry out the integration (88d)

For 1if, as a result of the comparison with (38b), we make v + 2 + 1
= n' + I, that 18, n' = v + [ + 1, p becomes dependent on v, whereas 1n
(88d) » 1s to have the same value (88c) for all members of the sum (39)
Consequently the condition of orthogonality does not here lead to the cal
culation of [7] and, 1n particular, gives rise to no selection rule for the radial
quantum number

F Questwons of Intensity Lyman and Balmer Series

The circumstances just described also increase the difficulty of cal-
culating 1ntensities generally We therefore restrict ourselves to the
sumplest cases

(@) In the Liyman series the final state 18 » = 1, and hence certainly
I =0 In the imtial state ' 1s arbitrary, but by (87) I' certamly = 1 So
we have

Lzz+1( ) =1 (23) = — 1[eqn (29)], } w0

2 1) - 12 (%)

If we choose 2 s/n" = x as a new variable of integration and, from now on,

omit the dash from n’ then, by (88a), we have
n+l

§= - (2) raﬁ $ @e % Cdw (40a)
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To perform this integration we use a special device In the exponential
function we temporarily replace 4(n + 1) by an arbitiary number « and
write
n\* d* * ad

S= — (§ d?sl, Sl = -[0 e~ md_m—gLn + 1(m)dw (40b)
Integrating by parts three times, in which process we may omit the
terms independent of the integral sign, as they will drop out of them-
selyes 1n the following differentiations with respect to «, we get, taking
(14) into account

L 1

3 ® — o], d 3 ~(¢—1)zdn+ N 4+ 1, — &
S, =« of n o 1(T)dT = o 0® dmn_,_l(w e~ %)

Further integrations by parts lead to
o
S, = o¥a — 1)»F lj‘o e~ g + gy
Introducing ¥ = a2 as a new variable of integration,

. 1\n 1 - 7 -+
8, = @i__l_)___ljog—yynﬂdy = (ﬁ_.L_l(n + 1)

o — 1 o — 1

and so, by (40b) P
n\s 44 @ — 1yp+1

We next differentiate A successively with respect to oo  After three
differentiations the factor

(m+ Ln(n — 1) = g:—t—%—:

may be extracted Four differentiations give
I\n —3

_(11+1)'(1 B E)

~ (n - 2)! ab

If we now write for a 1ts value 3(n + 1),

(m+ 1) (n — Ln =3
m—2)T(n ¥ Lyn e

Arv n+2 - 4a),

Ay = — 264

and so, by (40¢),
(n + 1) P(n — 1yn=»
mn—-2'(n+ I)n+s3
In our case (for which we set =1, I =0 and n' = n, I’ = 1) the
quantity C 1n (38a) becomes

1 a\*[(n + 1) 12(n — L)»—3
n, xns(z) (n - 2)) I(Szn.|. 1)2& +3 (41)

S = + 27;“[

Hence by (38a)

1
(=47, . N
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To calculate the N’s we must use eqn (18a) For n =1, 1 = 0 we
0 and 7, = a/Z by (30) So that for the final term we get

1 Z\3
N§0"4 <Z)

If we restrict ourselves to the {-component of the emission (the ¢- and
n-components must yield the same final result), then, on account of the
selection rule (37a), we must also set m = O for the initial term Egn

(18a) then gives
3 (n - 2) !
(axn) n[(n + 1)1

( ) \/(n - 91 1
Nl:ONmI (n+1)'n‘(n+1)|
Substituting m (41),

a m+ 1) (n — 1)n—3
] = 16(2)1%3 g’: :.'- 2; T g: + 131; 3 (41a)

By the second eqn (36) this expression 1s yet to be multiplied by the

also have m =

Consequently

factor [6¢];, which, by § 6, comes out as t/l_é

To obtain a measure of the intensity we must remember that our
matrix elements ¢, &, n signify electric moments M,, M,, M, with the
time factor e®?, where o 18 the frequency of the corresponding spectral
line The intensity observed in any particular direction, for example the
positive direction of z, 1s calculated from the fotal moment M by
differentiating twice with respect to ¢ (ef , for example, I, Chap I, p 25,
eqn (2)) in accordance with the formula
M2 sin? 6 _ M; + M; _ aM2 _ o'M}

4xc? 4med 4wed 2vc
6 denotes the angle between the vector M and the direction of observa-
tion 2
Now, for the nth line of the Liyman series
of  (n - 1)m 4 1)
= R(l - ) that 18, Tp—rorms = a
‘We therefore get for the intensity *
J__?i(n+1)1(n— 1ypn—2
Tt (n—-2) (n+ 1)mt2
or, written more simply,

J =

ar(n — 1)m—2
= S ¥ Dm i (42)

4T ol2
* We have cancelled the universal factor 23:;}:? Ze +» 1n oxder to get into agreement
with Paul’s result (cf next footnote and Schrodinger’s Collected Papers, p 101)
yoL 11 —8
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Asymptotically for n — = this gives
1
J —

n?

as can also be deduced from the correspondence principle for any
arbitiary serles

() In the Balmer series the final state1s 7 =2and I =0011 1In
the first case the selection rules (37) give I' = 1 for the initial state, 1n
the second case I’ can = 2 or 0 So we have three possibilities which
have alread~ been kept distinet 1n I, p 336, and have been characterised
by the seres notation principal series, diffuse series (first subsidiary
series), sharp series (second subsidiary setries)

n=21=0 n=2171=1 | n=21=1

n>2 =1 w>21=2 n'>21=0
n'p — 2s ‘ %'d—>2p n's —> 2p

Principal series  Diffuse series Shayp series

Here, too, the intensities may be calculated by the method used for the
Liyman series, but the working 1s a httle more cumbersome
We shall only quote the results
_ (2 = 1)(n - 2
- n(n + ) T2
Mn(n? — 1)(n — 2)m—3
3(n + 2)»+3

Qn(n — )2 —2

3(n + 2y +2

As the sum of all thiee sernles, which alone 1s observed in the case of
hydrogen, one gets
Total intensity

1 +2 43

1 Pimcipal series J

2 Daffuse series J =

3 Sharp serles J =

_ 2 — 2pm s
T om(n + 2T

The formule for the intensity of the lines in the Lyman and the
summed Balmer series were first calculated by W Pauli and communi-
cated by Schrodinger * together with a general method of representing
the corresponding matrix elements as series  Sugiwa t has extended the

(15n* — 32n* + 16)

caleulation to the Paschen series R(—g—; - 1%,—3) The component series of

the Balmer hnes and a great number of higher series have been
calenlated by A Kupperi A knowledge of the component series 1s
necessary for making a comparison with the observed series of the
slkalies This comparison comes out very favourably in the case of the
isorption measurements of the principal series carried out by Trumpy,§
* Coliecied Papers, Quanisaiion and Proper Values, II1, p 101
+Journ de phys, séne 6, 8, 113 (1927), ZS f Phys, 44, 190 (1927)

+Diss Miinchen, Ann 4 Phys, 86, 511 (1928)
§ ZS £ Phys., 42, 827 (1927), 44, 575 (1927)
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if the various alkalies are rationally allocated to the different hydiogen
series (L1 to the Balmer series, Na to the Paschen series, K to the
Brackett series, and so forth) On the other hand, the emission flame
spectra measured by Miss Bleeker * do not agiee at all with the theory,
nor do the hydiogen series themselves, which seem particularly sensitive
to the conditions of excitation t

§ 8 Statistical View of the Continuous Charge-cloud Complete and In-
complete Shells Magnetic Moments Spatial Quantising Physical
Applications (Sphere of Action in Collisions, Supposed Double Refrac-
tion 1 a Magnetic Field, Lattice Forces)

A Statwstrical View of the Comtinuous Charge-cloud

We refuse fiom the outset to take literally the charge-cloud to which
Schiodinger’s theory leads Rather we shall retain the well-founded
view that the election 1s point-like in form or at any rate 1s a configuiation
of sub-atomic dimensions We are led to this belief by all experiments
with cathode rays, thewr passage through metallic films, and the in-
divisibility of the electionic charge A theoretical factor also enters, which
1s furnished by the Schiodinger theory itself in the assumption of the
wave-equation every election 1s treated as a pomnt 1n the phase space
and calculations are made with definite co-ordinates =z,7,z, that 1s,
the electron 1s not treated as a continuous region For example, in the
Kepler problem we set the potential energy between the nucleus and the
electron proportional to (% + y% + 22) —% 1n the wave-equation, and we
thus give the nucleus the defimite co ordinates 0, 0, 0, and the election
the hikewise disciete co-ordinates z,y,2 If deductions from the wave-
equation lead to an apparently opposite result, no literal meaning can be
attached to 1t

Consequently the charge-cloud can have only a statistical meaning
Giving up the 1dea of :ndividual orbits we regard the charge cloud as the
sum-total of possible paths of the electron and imagine the average time
of stay of the electron in each individual position as determined by the
charge-density at that pommt This statistical view, first given a logical
basis 1n the papers of Born,f was placed on broader foundations by Pauly,§
Jordan,|| Heisenberg,** Dirac,tt London,{} and otheis §§ According to
them the quantum theory 1s rooted 1n the very fact that the measurement

* According to results kindly commumecated to the author by letter
+Herzbe1)g, Ann 4 Phys, 85, 565 (1927), cf also I Ornstein, Physikal Zeitschr,
28, 688 (1927
’ +M Born, Zeitschr f Phys, 38, 803 &926}, 40, 167 (1927)
§Cf the quotation 1n Jordan’s paper, Zeitschr H Phys , 40, 811 (1927)
I|P Jordan, Zeitschr £ Phys, 37, 376 (1926), 40, 809 (1927) 41, 797 (1927), 44,

1 19‘)7
¢ Heisenberg, Zeiwtschr £ Phys, 40, 501 (1927), 43, 172 (1927)
-H-P A M Dirae, Proc Roy Soc (A), 113 621 (1 27
i+ F London, Zeitschr £ Phys, 40, 193 192 g.r
§§M Born, W Haeisenberg, J'orda.n, Zeltso {f Phys, 35, 557 (1926)
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of physical quantities 1s essentially characterised by a lack of precision, 1n
that the accuracy of measurement of one of two canonically conjugate
quantities 1s conditioned by that of the other (Heisenberg’'s Uncertainty
Relation, Ungenataghetsrelation) In applying this 1dea to Schrodinger’s
theory the energs and the time co-ordinate are to be regarded as these
two special quantities In the proper states the energy 1s sharply deter-
mined , this makes the determination of the time 1mpossible and the 1dea
of oirbits traversed 1n time falls out of the pictumre  Only the average time
spent by the electron at every point, that 1s, the density of the chaige-
cloud, allows itself to be determined

It 1s quite 1n conformity with the sense of these general theories that
the i function 1s 1tself a mathematical auxihary quantity (Hzlfsgrosse) and
that 1t 15 only 1ts Norm * (multiplied by ¢) that has a real physical mean-
ing, namely the density of chaige p  The y-function coriesponds to whait
Jordan calls the “ probabihity amphtude ” 1n contradistinetion to the real
probability, which 1s defined as the modulus of the probability-amplitude
and 1s generalls complex Simple differential equations do not, however,
hold for the moduli but for their linear factors, the amphtudes,—all this
1s analogous to the state of affairs mn Schiodinger’s theory

We wish to go beyond this and although with less ceitainty point out
a closer analogy, namely one which emeiges fiom the 1elationships 1n the
electromagnetic field hele the physical, that 1s, measurable quantities
are the components of the energv-potential-tensor, that 1s, gquadratwc
functions of the field intensities Simple differential equations, namely
those of Maxwell, do not, however, hold for the tensor components but
for thewr hinear factors, the intensities These field intensities may also
be regarded as mathematical auxiliary quantities imntroduced for calculat-
mg the actual physical relationships between the eneigy and the motion

When we called the wave-mechanical density of charge a statistical
mean of the electronic orbits previously used we did not 1mply that this
mean 1s to be taken i1n the ordinary way In wave-mechanics there 1s
a finite density of charge, although only small, far outside the region of
the earlier orbits, that 1s, 1n a region where ordinary statistics would lead
to & zero value Thus a new sort of stafistics 1s involved which, indeed,
1s related to but not idenfical with the ordinary statistics of the oibits of
classical mechanies

B Symmetry of the Charge Distribution, m Partweular wn the Case of
Complete Shells
‘When dealing with the Eepler motion, § 7, C, we emphasised that the
S terms, that 1s, the states with I = 0, behave as if endowed with spherical
symmetry, but the P and D terms (! > 0) behave as if they are only axially
metncal This symmetry not only simplhfies the apphcations of the
fheory but, indeed, plays the decisive part in representing the physical
facts (¢f the examples treated under E and F)

*Seep 34
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What holds for the hydrogen atom may be applied gqualitatively
to the more complicated atoms In them, too, the 8 terms are
spheriwcally symmetrical For if, following Aiombau, Chap VII, § 4, we
imagme the dissimilanty of such atoms to hydrogen as pioduced by a
centrally-symmetrical but non-Coulombian supplementary field, which
reptesents the action of the atomic core on the series electron, this field
can disturb the course of the qualitative values of the proper functions but
not their central or axial symmetry In other words, the inner central
field will affect the radial component of the proper function but not the
angular component Pj"(cos §) e

The spherical symmetry of the S-terms 1s immediately obvious 1n the
case of the alkalies, where there 1s only one valency electron in a state for
which I = 0, the same 1s true of the alkaline earths with their two valency
elections in the same state and quite generally for any S term due to the
superposition of only spherically symmetrical states (I = 0) The fact
that a spherically-symmetrical state results from the superposition of
states that belong mdividually to 1> 0, so long as the resultant ! 1s zero
(namely, the group quantum number I, see below, under D, [ = 0 1s the
general definition of the S term), cannot be proved here

Further, according to A Unsold,* spherical symmetry 1s realised in the
case of all complete shells (j = 0) What a complete shell 1s can be fully
explained only by Pauli’s t Exclusion Principle (Verbot), which was not
known when the fourth edition of Atomban appeared, but which has since
become of pre-eminent importance in all questions of atomie physies, in
particular for the theory of the periodic system It states that in the case
in which several electrons occur each well-defined state can be 1ealised by
at most one electron A state 1s said to be well defined when 1t 1s character-
1sed by jfour quantum numbers We best choose as this quartet of
quantum numbers

n, {, m and m;
The first three correspond to the three degrees of freedom of the election
in the hydrogen atom, such as we have hitheito taken into consider-
ation, namely 1ts three co-ordinates 7, 8, ¢, and 1t 18 of no importance
whether we choose the 1adial quantum number =, for the r-degiee
of freedom or, instead, the more usual principal quantum number
n=mn,+ 1+ 1 DBut what does the fourth quantum number, which
we have denoted by mi, sigmify? What 1s 1ts corresponding degree
of freedom? The answer ] was not directly given by Pauli’s exclusion
principle but 1ts ground was prepared by 1t this fourth degree of freedom
Lies m the electron 1itself, namely in the angular moment due to 1ts spin,
taken along the same axis as that to which the magnetic quantum number
m (or expressed more fully ;) 18 referred
*Munchener Dissertation, 1927, Ann d Phys, 82, 855 (1927)

+ Zeitschr f Ph; és » 31, 765 1925)
$Hypothesis of Goudsmut a.nd Uhlenbeck, Physica 5, 266 (1925)
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1f we further add that the number 2 1s to be capable* only of the two
values my = * 1, we may define the conception of & complete shell thus
1t s formed by electrons of all those states m, ms whach for gwen values of
n and 1 are possible according to Paulv's exclusion p? wmcwple  The numbe:
of these electrons 18 2(2] + 1), 1n which the factor 2 arises from the two
possibilities for o, whereas the factor 21 + 1 corresponds to the sum-total
of mtegral values of m that result from the condition - ISm < 4 It
We write down a first approximation to the proper function y and the
density of chaige p for anv one of these electrons, that 1s we neglect
the mutual action of the elections among themselves (but assume the
action of the mnne: cential feld to be taken up 1n the 1adial component R)
and we also neglect a component which corresponds to the moment of
momentum due to the spin

R PJ*(cos ) emé R [B{(cos 6))®
YEX,T Ns Ng PTNINZ TN

Here R and N, are dependent on % and I but independent of m  We also
assume that R does not appreciably depend on the fouith gquantum
number m; The same then holds of N, wheieas Ny 1s, as we know,
equal to /37, that 15, 1t 15 constant  If we now sum up for the 2021 + 1)
electrons of the complete shell, we obtain, omitfing all factors independent
of m,

+1
2R: 1
= — (my —. sl 2 1
Sp Nfig Zm l\_2[1?5 (cos 8)] 1)

-1

The notation P)™ here indicates that of comse P;™ = P;/#™ The
densitv obtained by summation mm this way 1s at the same time the
densitv of charge that corresponds to the shell, to the same degree of
approximation as that caused by neglecting the mutual action between
the electrons TVe assert that this density 1s independent of 6, that 1s, that
16 18 spherically symmetrical §

The proof 1s based on a theorem of spherical harmoniecs which has
long been known, namels, the addstion theorem of spherical harmonies
if 6, ¢ and ', ¢’ are two points on the unit sphere and @ their spherical
distance, such that

cos ® = cos 6 cos §' + s § s 6 cos (¢ — ),

*This 18 the hypothesis of Goudsmit and Uhlenbeck , the magnetic moment of the
electron becomes equal to a Bobr magneton An explanation of the magnitude of the
mechanical and magnetic moment of the electron will come quite naturally out of Dirac’s
theorv {Chap II, § 10)

X t.:lThe gxss)e of negative values of 7 will be found very convenient 1n the sequel (cf
ote 1, p

1 Unsold (loc eif ) starts from the theory of perturbations in proving the erical
svimmetiry The simpler method of directly superposing the densifies, used 1n the text,
was indicated early by the author 1o the Physik Zettschr , 28, 288 (1927)
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then

+1
(Z - |7 ! ] — &l
Py (cos ©) = Z"’“) TLT‘I'r—n%'PyM (cos B)PJ™! (cos @)eme ~— 9 (2)
If in this expression we set § = §" and ¢ = ¢’ then cos @ becomes equal
to 1 and we get

+1
Pyl = %‘:ﬂ% I (cos 6))2 (28)
.y

But by § 6, eqn (80), the right side 1s identical with our sum 1n (1)

% = L byeqn (12a)of § 2the left side of (2a) 15 equal
to'1 Hence we see that our distribution of charge (1) 1s 1n fact inde-
pendent of 6, that is, spherically symmetrical

The symmetrical form of (2) 1s generally distorted by writing
P; (cos ®) = P; {cos 6) P; (cos 6)

except for the factor

l
+ 2 2 Ei—;%ﬂ" (cos 6) P (cos 6') cos m(p — @) )
The advantage we gain by using negative m’s and the exponential forms
becomes obvious by comparing (2) and (3) We can give our eqn (2) an
even more symmetrical form 1if we pass from the conventionally normalised
P™s to the rationally normalised functions, that 1s, those divided by
N = NyNg, which we shall call II* (2) then shows itself to be

equivalent to
+1

II; (cos @) I, (1) = } 0" (cos §) TI}® (cos §')ermis — ") (4)
oy’

In this form the addition theorem comes out directly as a special case
of a general theorem concerming a method of development in terms of
proper functions, as A Unsold (loc ¢t ) asserts, with ieference to a
lecture given by the author Instead of this we may also prove eqn (2)
as follows The left side of (2) 1s a spherical harmomc of Itb degiee
symmetrical in 6, ¢ and €', ¢, and continuous over the whole surface of
the sphere, that 1s, 1t 1s a solution of the partial differential eqn (1b)1n § 2
The most general form of such a solution 1s given by the right side of (2),
1f we leave the numerical coefficient undetermined mm each term we
call 1t ¢y, and we must have ¢ _p, = ¢ The ¢,,’s may now be succes-
sively determimed thus As in (2a) we set 6 = 6, ¢ = ¢’ and obtain,
quite analogously,

+1

2 em[P7H(Z)]? = 1, = cos 6 (5)

-
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If we make z = 1, all P™s vansh for |m | > 0 on account of the factor
sin™ § = (1 — z%)™ and we get

e [Pi1)]? = ¢y = 1,
as 1t should be by eqn (2) or (3) By taking the term with ¢, 1n (5)
over to the right and dimding by 1 — 22, we get from egn (5) [ef (25a)
of 3 6]
1 - [Pyx)]? .
2, [Bo + = 2l Py 4

1 which the terms not written down vanish for # = 1 (the factor 2 1s
duetom = £ 1) If we agan make z = 1, 1t follows that

11

S 2P W+ 1Y
cf the) expression (25) mn § 6 But this agiees with the coefficient
(-1
g+’
proved 1mn this wav

We now understand how much this spherical symmetry influences all
considerations about the mutual action of complete shells For a com-
parison we call to mind the model of the 8-shell developed by G N Lewas,
namely the static octet On account of its regular cubical airangement
this also has a high degree of symmetry such that the dipole and quadru-
pole moment of its charge-distribution vanishes But there 1emain higher
multipole moments, whose action some writers for a time wished to
adduce to explain the forces in crvstal lattices (cf § 8, F) In opposition
to this, however, our theorem states that for every kind of complete shells
(stable molecules also 1 general possess complete shells) the multipole
moments of any order vanish to a first approximation (that 1s, if we
neglect the mutual action of the electrons)

C  The Incomplete Sheils and thewr Magnetic Moments
‘We may regard the closed shells, hke the former cube of electrons, as
electrostatic systems on account of their spherical symmetry there 1s no
fasoured direction for a possible flow of the charge The case 1s different
with the incomplete shells, like the former electronic orbits, these may
be compared with systems of statiwonary currents The reason for this
1s given by a relation which Schrodinger * interprets as the equation of
continuity of electricity and uses for a general definition of the components
of current
Following Schrodinger we start out from the *time-equations” (13)
and (13a) of § 5 which we write
du h 82m.
u¥ 4ﬂm(A TR V)“

21

n (2) And so on Egn (2) may therefore be regarded as

Du* h 87;—3:)7), (6)
R Rl 4m_m(A - TR V)“*

* Collgcted Papers, p 122
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‘We multiply the first equation by %,* the second by % and add, observing
that the member 1n V cancels,

d h
3 t'u/u, 4mm(u*Au — uAu¥) (6a)

To 1ewiite the right side 1n another form we recall the formal relation of
Green’s theotem for any two functions % and u* we have

Bzu 2 * 0 W %% M}
bwz Y "ﬁ( @ Yz

w¥Au — wAu* = div(w* grad v — u grad «¥),
and so by (6a)

;—t(uu*) + 41:”7’ div(u grad w* — w* grad ) = 0 (D

This relation has the form of the hydrodynamic equation of comtinuity
Just as we 1dentified exw* with the charge density p, we shall set

8=— ———(u grad «* — u* grad u) (8)

equal to the current density (corresponding to the hydrodynamic density
of momentum pv) Just as the equation of continuity asserts the con-
servation of mass 1n space and time, our e multiplied by eqn (7) guarantees
the conservation of charge wn space and iwme the charge p only alters
according as 1t 18 brought up or conveyed away by the current As
Schrodinger emphasises, eqn (7) at the samse time guarantees the persisi-
ence of the mormalisation For if we integrate (7) throughout space, the
second member vanishes, the second then asserts the independence of the

quantity juu*d-r from time, we were therefore justified 1n normalising 1t

generally to unity

The above reflections hold so far only for one electron To be able to
apply them to a system of several electrons, for example, to a shell of
electrons, we recall the transition i § 1 from the wave equation (11) for
one electron to eqn (12) for several particles This tiansition can be
applied to the above time-equations (6), the eqn (7), which 1esults
from (6) remains preserved in form, but the symbol dw now applies to
the co-ordinates x,, Y4, 2, Of all particles (if the masses of the particles
duffer, the factor m must obviously be distinguished by an index o and
must be written after the symbol dw) Thus the conservation of charge
so far occurs in multi-dimensional phase-space, S 18 sumilarly defined
multi-dimensionally, m accordance with the generalised meaning of the
‘“gradient ” We can at once, however, arrive at a three-dimensional
equation of conservation for the charge of a single particle 1f we integrate
with respect to the co-ordinates of all the others All members of the
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expression under duw that refer to the co-ordinates of these other particles
vansh, the eqns (7) and (8) and the signs dw, grad agamn hold 1n the
onginal three dimensional sense 1if we take uu* and » grad w* and so forth
to stand for the quantities integrated 1n the manner indicated In this
way we explain the rule already given eather (§ 7, D) for determining the
distribution of charge to be attributed to the individual particle and
extend 1t by simultaneously determining the corresponding curient flow S

Just as 1m § 5, besides speaking of the density p of one state we also
spoke of the density pnm of the fransition between the two states n and m,
so here besides defining the current S that helongs to one state u, we also
define a current S,., which 1s calculated from ¢wo states # and m and hence
belongs to the tiansition m—= For this purpose we attach to % 1n the
first eqn (B) the index 7, and to w* in the second equation the mdex m
We multiply the first equation by u, the second by u, and get nstead

of (6a)

2 h
&(u,.u’,';) = g (UmAUn = UnAUy),
and hence, by Green’s theorem, n place of (7)
h
%(unu:,) + Tom v (up grad uy, — uy, grad u,) = 0
This signifies an equation of continuity for the density

*
Prm = €UplUp

Consequently we are justified 1n 1egarding the quantity

e h

o i, (tn grad o), — wp, grad an) (8a)

Smn =

as a generalised “ current-density ”

The quantities 8 = Sy, defined mn (8) form the diagonal elements of
the “ current matrix” Spq,, that 1s, a two-dimensional table of quantities,
whose individual elements are allocated to the transitions (and those of
the diagonal to the states themselves)

The current S as also S, will also have to be 1egaided as statistical
quanfifies S denotes the probable value of the charge which in unib
time flows 1 the direction of the vector S thiough a unmit smface placed
at right angles to this dnection

We first apply eqn (8) to the Kepler problem of one electron in a
stationary state For good reason, to be given later, we keep to om
practice of writing the y-function in the complex form with the factor
™ TFor we see from the general form of the expression (8) that the
component of S for every co-ordinate, on which y depends in a real way,

must vamish  For S 18, but for the factor 5:7, %, the wmaginary part of
¥ grad ¢*, and the latter is zero unless the differentiation 1s effected with
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1espect to a co-ordinate which occurs as an imaginary mny Let us take,
for example, the co-ordinates 7 and & in the case of the Kepler problem

Here we have
27

ghids 7 —2mgy
= e* , =R P’ (cosfemd, u*= ¥ *
2 12
W=RIW@%W’W:$m‘$uyﬁﬁTﬁ
Thus, - iR
u% = R—-[P7"(cos 6)]2
du*  R2 d
ﬂzm = TP;n (COS ﬁ)d—GPZ" (OOS 6),

both of which expiessions are real Hence 1t follows from (8) that

S¢=Sg=

The state of affairs 1s different, however, for the ¢ direction For this we
have 1 N
grady = 4 sin 6 ¢

o BUPY (cos Oy o _ el
u gradg u¥ = _ﬁ){e__( un) = 7o d
and by (8
: g, = -2 h ml*ﬁl ©
= T w3rrsmo )

mm which we wiite p for the electronic mass 1n order not to conflict with
the quantum number m

Hence, unless m happens to be equal to zero, the result vs a stationary
curcular cuwrrent about the polar axis 6 = O, wherever the chaige | ¢ |?
occurs, that 1s, really throughout infinite space

Fiom the current we pass on to 1ts magnetic moment M, whose axis
1s of course the direction § = 0 We calculate 1t according to the rule
magnetic moment = current strength (in emu) times the smface en-
closed by the current Corresponding to the specific curient Sy 1s the

current strength S¢do per ‘ cross-section” do (normal to ¢), or j— S¢do n

emu The surface enclosed by the current 1s 7rZsin?8 The confribu-
tion of do to the magnetic moment thus becomes

T llar

where dr = 277 s1n 6 do signifies the volume of the circular tube formed by
rotating do about the axis § = 0 Summing up all such contributions we

471'0

get, on account of the normalising condition I | 2dr =1,

h
M=~ m (10)

e
© &me
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Thus we get exactly m “Bohr magnetons” [cf I, eqn 14 p 249, the
negative sign signahises the negative charge of the electron] We agree
with E Fermi* 1n regarding this simple wave mechanical explanation of
a relationship demanded by the earlier quantum theory as a beautiful
confiimation of Schrodinger’s assumption (8)

Before we discuss the geneial consequences of our result we must
dispel a doubt that at once suggests itself We obtained a current S
differing from zero, as was emphasised, only from our foim of ¢ which
was complez 1n ¢  But there 1s nothing to prevent our passing on to the
real part of ¢ and to write cos m¢ or, more generally, cos (¢ — a) 1n
place of em¢  According to the above working we should then get S5=0
This apparent difficulty 1s to be explained as follows Distinguishing our
pola1 axis mathematically 1s only justified if this axis 1s also distingmished
physically, for example, by a magnetic field applied in this diection
But the use of ¢™® 1s then no longer arbitrary but necessary For in the
Zeeman effect the magnetic field differentiates the two directions of
revolution of the electron (that 1s, the two assumptions ex*™) and pro
cures for them different energy levels (proper values) Thus the above
calculation 1s quite legitimate 1n the case of a magnetic field H and hence
also 1n the case of passing to the hmt H — 0 (¢f I, Chap IV, §7,p 249),
in which the proper functions of the Zeeman effect merge into those of
the Kepler problem, the dunection of the magnetic field, howevel, remain-
ing phisieally distinguished The fact that wave-mechanies gives mno
electric curient and no magnetic moment if we consider the degenerate
Kepler problem, that 1s,1f we do not consider 15 as a hmiting case of a
Zeeman problem and 1f we do not use the complex form then necessary
of the proper function 1s no fault but 1ather & merit of wave-mechanics
Just as in the older theory the orbits could have any position 1n space in
the absence of a magnetic field, so also the electiic curient of wave-
mechanics has no definite orientation when no magnetic field 1s present
Since wave-mechanics always takes the statistical mean 1t can easily be
understood that in the degenerate Kepler problem 1t ariives at the state-
ment

S=0,M=0

‘We can now answer the questions relating to current and magnetism
n 3 complete or an incomplete shell If we calculate to a first approxi-
mation, that 1s, neglecting the interaction between the electrons consti-
tuting the shell, then we may superpose the currents of these electrons
just as under B we superposed their densities We shall 1n fact see 1n the
next section that the current and the density together form a higher entaty
(a “four-vector”) We also imnfer directly from (7) and the remarks that
followed about mulfi-electronic systems that the superposition of currents
occurs simultaneously with that of densities But the magnetic moment
18 caleulated from the currents Consequently the magnetic moment 18

* Nabure, December, 1926, p 876
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also obtained by superposing the magnetic moments of the individual
electronic states Thus 1t follows from (10) that

M = 3m magnetons (1Y)

Hence an wncomplete shell s wn general paramagnetic, (11) gives the
componeni of the paramagnetic moment in the direction of the magnetic
field We see at the same time that the complete shell 1s non-magnetic (ox,
bettel, dramagnetsc) , for in this case, 1n virtue of Pauli's exclusion prineiple,
Sm becomes equal to zero, since in such a shell #¢ assumes 1n tuin the
9l + 1 integral values between — ! and + { The last asseition still
1emains unaffected 1f besides the magnetism of the curients S (of the
« revolving electrons”’) we also include 1n our calculations the magnetism
due to the rotation of the electrons themselves For the latter contri-
butions cancel in pairs since by Paul’s principle the total number of
electrons 1n a complete shell 18 2(2] + 1) and for every election with m
and ms = + 4 there 1s another with m and ms = — 1

D Indwndual I and Group Quantum Number 1  Spatial Quantising

The relationships desciibed above may be simply epitomised as
follows In the case of one electron with a given I we interpret the [ as a
vector (moment of momentum of the 1evolution of m=3
the electron in the old sense or of the current 1n the
present sense) The magnetic moment of the cur-
rent mn the direction of the z-axis 1s determined by
the projection m of I on this axis To the 21 + 1
possible values of m, namely — I < m < + [there
correspond 2] + 1 possible positions of [, as repre-
sented 1n Fig 8, 1n which, of course, every posi-
tion can be rotated about the z-axis on a cone
In this way we arrive at the analogy 1 wave-
mechanies to the spatial quantising of Chap II,
§8 (Vol I) The flow 1s, 80 to speak, latent until <
we direct 1t by means of an appled magnetic field _,
and even then shows only the component of 1ts
moment 1n the direction of the axis of the magnetic Spatial quantising
field, that 18, the projection m of the moment Magnetic quantum num
vector on this axis Our figure goes a little, but ber m and azimuthal

quantum number I for
not essentially, beyond the analytical facts of wave- [—3 m=0, +1, +2, +3
mechanics and summarises 1t 1n a convenient form

Besides | we shall now take into account the electron spin s, that s,
in addition to m; (which we have hitherto denoted simply by m) we con-
sider the magnetic quantum number m, which = + 34 The sum of these
tWo, m = m; + M, 1 then no longer integral with the maximum values
+ I, but half-integral with the maximum values = (I+3) and £(I—4)
The number of values of m 1s no longer 21 + 1 but 2(27 + 1) on account

Fiac 8
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of the additional possibility 1ntroduced by ms having the two values * §,
as we have already seen at the conclusion of the previous section C
‘We divide this number into two groups of (2] + 2) and (20) values,
respectively, and assign them to the two values
J=l+s=I+%andy=|l~s|=|l -} (12)

respectively

Thus by taking into account the spin of the electron we ariive by
means of wave-mechanics (or pseudo wave-mechanics) at the “inner
quantum number” ) which plajed the principal part in systematising
spectra 1n Chap VIII, Vol I The new feature is that we now introduce
this number for the individual election 1itself, so that 1t occuis even for
the H-atom, wheieas we earher believed 1t to be necessary only in dealing
with the structure of muluplets

If we imagine Fig 8 to be constructed with the half-integral num-
bers 7 = 1 = 1 m place of the whole number I, then the corresponding
m = my + m; follows 7 1n becoming half-integial and there are 97 + 1 of
them for each of the two values of 7, that 1s, as above indicated, there
are 2l + 2 or 21 of them iespectively In the case I = O (S-term) the
negative value of the two j-values, j = [ £ 4, of course drops out, as 1s
indicated 1n (12) by the vertical limes Thus the S-texm shows itself to be
simple and all other texms double, ike the alkali terms

After Lande had repeatedly called attention to the alkali-like character
of the Rontgen terms and after the Rontgen terms (since 1916) had been
recognised as bemng hydrogen-like, the alkali-like doublet chaiacter of
hydrogen terms was generally 1ecognised 1n 1926 simultaneously with
the discovery of the spinning election This necessitated numbering the
fine-structure levels with two quantum numbers ; (balf-integral) and !
(integral) instead of, as earher, with the one quantum number #(= I + 1)
As a result of this the selection rules become modified and we get certain
weak but experimentally proved components of the fine structuie, as well
as of the anomalous Zeeman effect and of the Paschen-Back effect—all
in agreement with what occurs in the case of the alkalies We shall
revert to these points in the next section Here we wish to emphasise
only that the systematic structure of spectra becomes beautifully com-
pleted by the new classification of the hydrogen lines the ¢ Alternation
Law’ * (Wechselsatz, Atombau, Chap VIIL, §2, and I, Chap VI, p 380)
now holds without exception down to the first elements of the periodic
system